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Abstract 

Molecular basis of chemosensory perception 

 

Smell and taste perception consists in a chemical stimulation of transmembrane receptors lying 

on the surface of sensory cells located in the nasal or oral cavity. The receptors involved in 

olfaction and the perception of bitter, sweet and umami taste all belong to the well-studied G 

protein-coupled receptors (GPCR) family, yet to date their exact tridimensional structure still 

eludes us. In this thesis, I study the molecular structures at the frontline of chemosensory 

perception, namely receptors and their ligands, through a computational lens. To begin with, I 

expose how quantitative structure-activity relationships (QSAR) lead us to the discovery of 

natural semiochemicals that effectively disrupt the destructive behavior of a pest to crop plants, 

Spodoptera littoralis, by targeting its olfactory receptors. I then apply a similar machine 

learning strategy to develop an online predictive platform that estimates the relative sweetness 

of molecules based on their structure, resulting in the discovery of a novel sweet-tasting lignan 

scaffold. Finally, I make use of molecular modeling and available mutagenesis data to provide 

relevant three-dimensional models of bitter taste receptors, and predict molecular switches 

involved in ligand-sensing and receptor activation. Besides, I design a Python library that 

encodes interactions in molecular complexes as fingerprints for an efficient analysis of 

molecular dynamics trajectories, docking results and experimental structures, and showcase it 

on a variety of scenarios involving GPCRs. Overall, this thesis illustrates the implementation 

of computational strategies to gain knowledge on chemosensory perception, from taste to 

olfaction, at the molecular level. 

 

Keywords: Molecular modeling, machine learning, chemoinformatics, olfaction, taste, GPCR 
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Bases moléculaires de la perception chimiosensorielle 

 

La perception olfactive et gustative provient d’une stimulation de nature chimique des 

récepteurs transmembranaires émergeants de la surface de cellules sensorielles situées dans la 

cavité nasale ou orale. Les récepteurs impliqués dans la perception des odeurs et des goûts amer, 

sucré et umami appartiennent à la famille des récepteurs couplés aux protéines G (RCPG). 

Malgré une connaissance approfondie de cette famille, une définition précise de la structure 

tridimensionnelle des RCPG chimiosensoriels nous échappe encore à ce jour. Dans cette thèse, 

je mets en lumière les structures moléculaires en première ligne de la perception 

chimiosensorielle, à savoir les récepteurs et leurs ligands, au travers d’un microscope 

computationnel. Dans un premier temps, je mets en avant un cas concret d’utilisation des 

relations quantitatives structure à activité (QSAR) par la découverte de composés 

sémiochimiques naturels interférant avec le comportement destructeur d’un insecte ravageur de 

cultures agricoles, Spodoptera littoralis, en ciblant ses récepteurs olfactifs. Par la suite, en me 

basant sur une méthode d’apprentissage automatique similaire, je conçois une plateforme en 

ligne permettant la prédiction du pouvoir sucrant de molécules en se basant sur leur structure, 

ce qui nous a permis de révéler un composé sucré innovant de la famille des lignanes. Pour 

finir, grâce aux outils de modélisation moléculaire et aux données de mutagénèse dirigée, je 

construits des modèles 3D de récepteurs au goût amer afin de prédire les interrupteurs 

moléculaires impliqués dans la détection des ligands et l’activation de ces récepteurs. En 

parallèle, je développe une librairie Python qui encode les interactions de complexes 

moléculaires sous forme d’empreinte numérique afin d’analyser des trajectoires de dynamique 

moléculaire, des structures issues d’amarrage moléculaire, ou des structures expérimentales, et 

je mets en valeur ce logiciel dans une multitude de scenarios impliquant des RCPG. Dans 

l’ensemble, ces travaux de thèse illustrent la mise en œuvre de méthodes numériques pour 

extraire des informations sur la perception chimiosensorielle, qu’elle soit olfactive ou gustative, 

à l’échelle moléculaire. 

 

Mots clés : Modélisation moléculaire, apprentissage automatique, chémoinformatique, 

olfaction, gustation, RCPG  
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Introduction 

Chemosensory perception 

Chemosensation allows multicellular organisms to evaluate the chemical composition of their 

surroundings and communicate with each other, a crucial ability for both survival and 

reproduction [1]. This type of primal sense has evolved in humans and most animals to be 

distinguished in two senses: olfaction and taste. Olfaction corresponds to the detection of 

volatile compounds by olfactory sensory neurons located in the nasal cavity. Depending on the 

route taken by said volatile compound, the resulting percept will be defined as an odor (through 

the nostrils i.e., the orthonasal pathway) or an aroma (from the oral cavity and through the 

pharynx i.e., the retronasal pathway).  

Taste originates from the detection of sapid molecules by taste buds mostly located in lingual 

papillae on the tongue. The taste sensation is comprised of 5 basic taste modalities, namely 

saltiness, sourness, bitterness, sweetness, and umami [2], and should not be mistaken with 

chemesthesis. The latter, also termed trigeminal sense, corresponds to sensations detected by 

the somatosensory system and includes pungency, coolness, astringency, and metallicness [3]. 

Additionally, the characterization of fat taste, also referred to as oleogustus, as a basic taste 

modality is still under debate [4]. Finally, the flavor of food items is a multisensory modality 

that results from aroma (the perception of odorant compounds released during mastication by 

the retronasal pathway), in conjunction with taste and chemesthesis. 

Anatomy of taste and smell 

In vertebrates, the olfactory system is divided in two systems: the main olfactory epithelium 

(MOE) mainly responsible for odorant detection, and the vomeronasal organ (VNO) which 

mainly detects pheromones, although both organs can detect odorants and pheromones [5, 6] 

(Figure 1a). In insects, the olfactory sensory neurons (OSNs) are housed in sensilla (sensory 

hairs) that can be found on the maxillary palp and antennas [7], while the MOE is located below 

the cribriform plate in the nasal cavity of mammals (Figure 1b). These OSNs are, in both insect 

and vertebrates, bipolar neurons that extend a dendrite ending in ciliated projections, while the 

axon joins specialized olfactory structures in the brain [7, 8] (Figure 1ab).  
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In mammals, OSNs follow the one-receptor one-neuron paradigm where a single neuron only 

expresses a specific olfactory receptor (OR) [9]. It enables a combinatorial code where one 

odorant can activate multiple neurons each expressing a different OR, and one neuron can be 

activated by a diversity of odorants. With around 400 functional OR genes [10], thanks to such 

combinatorial code humans have been estimated to be able to discriminate more than 1 trillion 

odors [11], although these claims have been firmly disputed [12, 13]. 

Taste, on the other hand, is detected by specialized gustatory cells found in taste buds. The 

majority of taste buds are usually located on the tongue within papillae, but some exceptions 

have been found, like chickens for which they are mostly found on the palate and lower beak 

[14]. Additionally, gustatory papillae are also located on the palate, pharynx, larynx, and upper 

esophagus [15]. Taste buds are made of five types of cells, of which two are responsible for 

gustatory functions, namely receptor (type II) and presynaptic (type III) taste cells [16] while 

the other cells include glia-like (type I), basal (type IV) and marginal (type V) cells [15] (Figure 

1c). Type II cells primarily expresses receptors responsible for sweet, umami and bitter taste 

perception, while type III cells respond to salty and sour stimuli. Since only type III cells have 

synaptic contact with nerve fibers, type II cells use ATP as a neurotransmitter to activate 

presynaptic cells or nerve fibers directly. While type II cells are tuned to a single taste modality 

since they primarily express a single class of taste receptor for either umami, bitter, or sweet, 

type III cells can respond more broadly to other tastants, especially bitter compounds, and can 

integrate the signal from neighboring receptor cells [16]. 

To explain taste coding i.e., how the afferent nerve fibers carry taste stimuli to the brain, two 

hypotheses have been proposed and are still under discussion: the “labelled line” and “across-

fibre pattern” models [17, 18]. On the one hand, the “labelled line” model suggests that each 

afferent fiber is tuned to a specific taste, on the other hand, the “across-fiber” model states that 

the afferent fibers can transmit information for several taste modalities. Recent advances seem 

to favor a combination of both models, but also stress the importance of temporal coding since 

firing rates could play a role in encoding taste quality [19]. 
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Figure 1: Anatomy of chemosensory perception. Structures responsible for smell perception in a) the 

fruit fly and b) mouse. MOE: main olfactory epithelium, VNO: vomeronasal organ. Adapted by 

permission from Springer Nature: Macmillan Publishers Ltd., Nat Rev Neurosci, “Olfactory signalling 

in vertebrates and insects: differences and commonalities”, Kaupp, U. B., © (2010). c) Structures 

responsible for taste perception. TRC: taste receptor cell. Tongue and papillae adapted from OpenStax 

[CC BY 4.0], taste bud from NEUROtiker [GFDL, CC BY-SA 2.5], taste cells from Jonas Töle [CC0]. 
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Chemosensory receptors are transmembrane receptors 

Both chemical senses, smell and taste, rely on transmembrane receptors to detect odorant or 

tastants molecules in the extracellular domain. In vertebrates, these chemoreceptors belong to 

two families of transmembrane receptors: ion channels and G protein-coupled receptors 

(GPCRs) (Figure 2). 

The first family, ion channels, participate in sour and salt taste perception. Several genes have 

previously been proposed to code for candidate sour receptors, including the polycystic kidney 

disease 2-like 1 (PKD2L1) receptor which has been demonstrated to be expressed in taste cells 

responsible for sour taste [20]. However, knockout of the PKD2L1 gene in mice had minor 

effects on sour perception, indicating only partial contributions from this receptor [21]. More 

recently, otopetrin 1 (OTOP1) was identified as a proton-selective ion channel that is highly 

expressed in taste cells [22], and was later confirmed by knockout experiments as the proper 

sour taste receptor [23, 24].  

Regarding salty perception, an ion channel specific to sodium, the epithelial sodium channel 

(ENaC), has been identified as the main salt taste receptor of some vertebrates [25]. This ion 

channel, often called “amiloride-sensitive” due to amiloride being a known inhibitor, is 

responsible for the attractive behavior resulting from NaCl consumption at low concentrations. 

However, at higher concentrations of NaCl, another salt transduction pathway is used and leads 

to an aversive response, with the particularity of being insensitive to amiloride and less ion 

specific [26, 27]. The activation of this specific pathway could however depend on the chloride 

anion more than sodium cation [28], and the corresponding chloride receptor has yet to be 

discovered. Furthermore, the amiloride-insensitive response is mediated by type II or type III 

cells, depending on the type of papillae [28], while amiloride-sensitive response may rely on 

type I cells which were previously thought to only play a support role in taste buds [29]. 

Additionally, ion channels also play a role in olfaction as the functional odorant-sensing unit of 

insects is a ligand-gated ion channel [30]. Briefly, their olfactory receptor is a heteromer of 

unknown stoichiometry made of a highly conserved subunit named Orco, and an odorant-

binding receptor [31]. Interestingly, these two subunits adopt a fold with seven transmembrane 

domains similar to G protein-coupled receptors (GPCRs), although with an inverted topology 

[32]. 

Alongside ion channels, another type of transmembrane receptors, the GPCR family, takes part 

in taste and odorant perception. This receptor family has a typical seven-helix fold, is 
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subdivided in six classes, and two of them are of interest for chemosensation. The class A family 

(rhodopsin-like) concerns the largest number of chemosensory receptors as it covers taste 

receptors type 2 (TAS2Rs) which are activated by bitter compounds, olfactory receptors (ORs), 

vomeronasal type-1 receptors (V1Rs), and trace amine-associated receptors (TAARs) [33, 34]. 

The class C family (glutamate), on the other hand, includes taste receptors type 1 (T1Rs) 

responsible for both sweet and umami perception, as well as vomeronasal type-2 receptors 

(V2Rs) [33, 35] and is structurally characterized by a very large extracellular domain that binds 

agonists.  

Vertebrate olfaction rests upon ORs, TAARs, V1Rs and V2Rs. While ORs detect a variety of 

volatile molecules and their breadth of tuning ranges from narrow to broad, TAARs are 

specialized in binding biogenic amines and are never expressed in the same OSN as ORs [33], 

and vomeronasal receptors mainly bind pheromones (V1Rs) or peptides (V2Rs) [36]. Finally, 

the structural characteristics of insect ORs, T1Rs, and TAS2Rs are studied in more details in 

the corresponding chapters of this thesis. 

 

Figure 2: Schematic representation of chemosensory receptor structures in vertebrates, along with their 

function and family of transmembrane receptors. 

Transduction of chemosensory stimuli 

For the two types of transmembrane receptors, the signal transduction mechanism is different 

and can be either metabotropic for GPCRs, or ionotropic for ion channels. Although each 

chemosensory receptor may have specificities regarding the molecular structures involved in 

transduction, a general process is presented here for both classes, and further detailed in the 

next chapters. 

In GPCRs, upon ligand binding, conformational changes occur in the receptor leading to its 

activation which promotes the binding of a G protein. The G protein is a heterotrimer made of 

a Gα subunit bound to guanosine diphosphate (GDP), and Gβ and Gγ subunits. When the G 



Introduction 

6 

 

protein binds to the GPCR, the GDP-binding site is destabilized which ultimately results in 

GDP dissociation, rapidly replaced by a guanosine triphosphate (GTP) taken from the cytosol. 

In turn, it promotes Gα conformational changes leading to the dissociation of the GTP-bound 

Gα from the Gβγ subunits [37]. Both subunits can then trigger a variety of signaling cascades 

involving different downstream effector proteins, leading to the release of neurotransmitters in 

the synaptic cleft made with an afferent neuron. 

In ion channels, signal transduction is more straightforward as it does not typically involve 

secondary messengers. As the channel opens (triggered by ligand binding or other events), ions 

such as Ca2+, Na+, or K+ flow through the membrane, leading to a depolarization of the 

chemosensory cell thus stimulating an afferent neuron. 

Perireceptor events that influence chemosensory perception 

Several mechanical, biological, and biochemical events can modulate the perception of the 

environment through chemical senses. For example, sniffing is known to influence the intensity 

perceived by humans when smelling odorants [38], but similar mechanical optimizations occur 

in other species [8], such as moths using their wings to maximize the airflow passing through 

their sensilla [39]. Additionally, nasal anatomy may influence olfactory sensitivity as specific 

nasal features can contribute to create a vortex inside the nasal cavity which potentially 

maximizes residence time in the olfactory region [40]. 

Furthermore, changes in pH can greatly affect sweet taste perception, as shown by miraculin, a 

protein extracted from the red berry Richadella dulcifica. At neutral pH, miraculin inhibits the 

sweet taste of aspartame, cyclamate, and three sweet tasting proteins (neoculin, thaumatin and 

brazzein), but at acidic pH it becomes itself a highly potent sweetener [41]. 

In addition to salivary pH, salivary composition can influence flavor perception by interacting 

with food components. For instance, both mucins and α-amylase decrease the release of aroma 

compounds, and salivary enzymes are able to lower the concentrations of esters, thiols and 

aldehyde from mixtures of aroma components [42]. Salivary composition is also subject to 

inter-individual variability and differences in the proteome and metabolome of individuals can 

influence their sensitivity to food components like oleic acid [43]. 

Similarly to saliva, several proteins can contribute to olfactory perception before and after 

odorant binding. Odorant binding proteins (OBPs) are small and soluble proteins that 

participate in the transport of odorants through the aqueous nasal mucus or sensillary lymph 

towards ORs. They adopt the typical structure of lipocalins and interact with odorants mainly 
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through hydrophobic interactions, hence their role in facilitating the transit of lipophilic 

odorants [44]. Besides, xenobiotic metabolizing enzymes (XMEs) are involved in the 

degradation of potentially toxic compounds as well as odorants, and are highly expressed in the 

olfactory epithelium [44]. They participate in odorant clearance to maintain sensitivity but can 

also affect perception by transforming the initial odorant into another OR-binding metabolite. 

Overall, both OBPs and XMEs can influence the availability of odorants to ORs, and 

polymorphism on the corresponding genes could be in part responsible for the variability in 

odorant and aroma perception. 

Polymorphism on chemosensory receptors 

This last point raises a key part in chemosensory perception: how interindividual variability in 

taste and olfactory receptors affects perception and more. One of the most striking examples 

related to taste perception is the difference in phenylthiocarbamide (PTC) sensitivity related to 

haplotypes of the bitter taste receptor TAS2R38. Three positions can be subject to single-

nucleotide polymorphisms (SNPs) on this receptor, A49P, V262A and I296V, and constitute 

two common haplotypes: AVI, the most common but recessive non-taster allele, and the taster 

PAV haplotype. The AVI/PAV heterozygotes are the most common in the population and can 

taste PTC, while AVI homozygotes are non-tasters and PAV ones are more sensitive to PTC 

(super-tasters) compared to the heterozygotes [45]. Similar effects are observed with another 

related compounds, 6-propyl-2-thiouracil (PROP), as both molecules contain a thioamide 

moiety. While PROP and PTC don’t appear in food items, other thioamide or related 

compounds, namely goitrin and sinigrin, exist in several cruciferous vegetables such as Brussel 

sprouts, cabbage, and broccoli and were shown to be affected by the same polymorphism [46] 

(Figure 3). This could be part of the reasons that explain the avoidance of cruciferous vegetables 

by individuals, especially young children for whom PROP sensitivity was linked to a lower 

acceptance of raw broccoli [47]. 

 

Figure 3: Structures of PTC, PROP, goitrin and sinigrin with the thioamide or equivalent moiety 

highlighted. 
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Odorant perception can also be greatly affected by genetic variations, as evidenced with 

androstenone, a pheromone in boars which is detected by the human olfactory receptor OR7D4. 

Its odor is described as unpleasant, urine- and sweat-like, or pleasant, vanilla- and sweet-like 

depending on individuals, and can taint the flavor of pork meat. Two SNPs exist for this 

receptor, R88W and T133M, leading to the most common and functional allele RT and the non-

functional WM haplotype. The RT homozygotes are sensitive to androstenone odor, while the 

RT/WM and WM/WM genotypes are insensitive to this smell, and OR7D4 genotype influences 

the perception and liking of androstenone-tainted pork meat [48].  

As shown in both examples, genotype shapes chemosensory perception, and because perception 

dictates food acceptance and dietary intake, genotype can also affect consumer habits. 

Hypersensitivity to repulsive odors and tastes due to genetic variations can thus lead to the 

rejection of food with positive health effects like fruits and vegetables containing phenols, 

triterpenes, and organosulfur compounds [49]. 

Relevance of chemosensory research 

A better understanding of olfaction and taste at the molecular level can have direct applications 

in many industries. For example, perfumers and agri-food companies might be interested in the 

development of novel odorants or tastants with specific properties to comply with new safety 

regulations, fulfill consumer’s expectations, or cover new market opportunities. The 

agricultural industry can also benefit from advances in the field as new odorant repellants for 

pest protection appear, and because some insects like mosquitoes also function as disease 

vectors, such repellants could also be of use in epidemiology. Scent also finds applications in 

marketing strategies through olfactory marketing, as it can help to build a brand’s identity. It 

can also entice consumers to purchase products, as the sense of smell is often associated with 

an emotional response because of the close relationship between the olfactory cortex and the 

limbic system responsible for memory and emotional processing [50]. 

More surprisingly, chemosensory research has implications that go well beyond olfaction and 

taste. Genetic mutations on the bitter taste receptor TAS2R38 have been previously associated 

with decreased risks of obesity [51] and reduced odds of cigarette smoking [52], while an SNP 

on TAS2R16 was shown to decrease the risk of alcohol dependence [53]. Although the reasons 

for such associations are not known, clinical relevance of bitter taste receptors could be 

explained by their ectopic expression. TAS2Rs are indeed expressed in extra-oral tissues, but 
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their function in these diverse locations is not always understood. For instance, motile cilia 

found on epithelial cells of the human airway express bitter taste receptors, and their stimulation 

by bitter compounds increases ciliary beat frequency, potentially as a defense mechanism to 

propel noxious compounds out of the airway [54]. A haplotype of TAS2R9 has also been 

associated with altered glucose and insulin homeostasis [55], and associations of TAS2Rs with 

several other systems and diseases, including cardiac, vascular, testis, semen and cancerous 

cells and Parkinson disease, have been suggested [56]. Sweet and umami taste receptors also 

participate in extraoral functions, as showcased by the presence of T1R3 in the gastrointestinal 

tract to promote endocrine response through nutrient detection [57]. Extraoral roles of the sweet 

taste receptor has been more thoroughly reviewed by Laffitte et al. [58]. Similar diversified 

roles of ectopic olfactory receptors, notably in heart, lung, sperm, skin and cancerous tissues, 

have also been shown [59]. 

Computational strategies applied to chemical senses 

To date, experimental structural information about chemosensory receptors is extremely scarce. 

For olfaction, some light has been shed on the olfactory co-receptor (Orco) of Apocrypta bakeri 

[60] thanks to cryo-electron microscopy (cryo-EM). Regarding taste, only ion channels have 

been fully resolved by cryo-EM recently, with structures for the zebrafish candidate sour 

receptor Otop1 [61] and the human salty taste receptor ENaC [62]. Additionally, part of the 

structure of the extracellular domain of the medaka fish’s sweet taste receptor has been obtained 

by crystallography [63]. Thus, the transmembrane domains of all G protein-coupled 

chemosensory receptors, from taste to olfaction, have yet to be determined experimentally. 

Consequently, computational strategies have been previously used to predict the structure [35, 

64] and study the dynamics [65, 66] of these receptors. 

Concurrently, both structure-based [67, 68] and ligand-based [69–71] approaches have been 

applied to search for new active ligands, thereby accelerating the deorphanization of some 

chemosensory receptors or widening the explored chemical space. 

 

In this way, this thesis was focused on getting a better picture of the molecular determinants of 

chemosensory perception through a computational lens. To reach this goal, two practical and 

fundamental objectives were set: i/ identifying small molecules that can modulate the activity 

of olfactory or taste receptors, and ii/ developing modeling protocols that can help us achieve a 

better understanding of the molecular processes occurring during taste perception. In order to 
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tackle these objectives, different computational methods were used. Quantitative structure-

activity relationship (QSAR) models combine machine-learning with molecular features 

extracted from the structure of compounds to identify active substances, and such approach was 

applied to the rational discovery of novel odorants and tastants. For the second objective, I 

focused on generating 3D models of bitter taste receptors using homology modeling to identify 

molecular switches that play a role in ligand binding and signal transduction. 

My contributions to chemosensory research are gathered in this thesis in three chapters, one for 

each olfactory and gustatory modality, where I assembled the scientific publications that I 

authored. In the first two chapters, machine-learning algorithms were implemented to identify 

candidate odorant or sapid molecules which were validated through in vitro or in vivo 

experiments performed by collaborators. The first chapter is focused on Spodoptera littoralis, 

a pest to crop plants, and our efforts in finding natural odorants that can disrupt the insect’s 

behavior for applications in biocontrol strategies. The second chapter revolves around the 

search for natural intense sweeteners and the development of a web-based predictive platform. 

While QSAR models can successfully guide screening campaigns related to chemosensory 

problems, data is often scarce or poorly labelled which is far from ideal with machine-learning 

methods. Structure-based approaches thus appear as credible alternatives despite the other 

challenges they raise. In this direction, the last chapter is dedicated to the development of a 

molecular modeling protocol for reconstructing bitter taste receptors which recapitulate 

experimental mutagenesis data, followed by the identification of molecular switches that 

participate in ligand sensing and signal transduction. 

In parallel to these main research questions, I was involved in side-projects, one of which could 

potentially be applied to decipher the allosteric activation mechanism of TAS2Rs. I developed 

a Python library, named ProLIF, which can extract interaction fingerprints from complexes (in 

MD trajectories, docking poses, or crystal structures) that combine ligand, protein, DNA or 

RNA molecules. The library was showcased on class A GPCRs to highlight key interactions 

that participate in ligand and G protein binding, as well as differences in inter-helical 

interactions between active and inactive structures. Such analysis could be of use to gain 

knowledge on structure-function relationships in bitter taste receptors. 

Altogether, this thesis illustrates the implementation of computational strategies to gain 

knowledge on chemosensory perception at the molecular level.  
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Figure 1: Spodoptera littoralis at different stages of its life. a) Caterpillar [© David Marquina Reyes, 

CC BY-NC-ND 2.0] b) Adult moth [© Katja Schulz, CC BY 2.0] 

 

The cotton leafworm Spodoptera littoralis (Figure 1) is a polyphagous insect labelled as a 

quarantine pest by the European and Mediterranean Plant Protection Organization (EPPO) 

because of its potential economic impact [1]. Native of Africa, the noctuid moth is also found 

widely in Mediterranean Europe and parts of the Middle East [2, 3]. The widespread presence 

of this pest can be explained by its broad host range, with around 80 known host plants and 

crops [3, 4]. For these reasons, it is considered to be one of the most destructive pests among 

the Lepidoptera order [2]. 

Many of the damaging behaviors caused by insect pests, including Spodoptera littoralis, are 

closely related to olfaction as odorants convey information that take part in critical aspects of 

their lives such as reproduction, food, and oviposition [5]. This makes the olfactory system a 

promising target for biocontrol strategies using semiochemicals i.e., attractants or repellents, to 

better regulate pest behavior. 

In insects, odorant stimuli are perceived by olfactory receptors (ORs) expressed at the 

membrane of olfactory sensory neurons (OSNs). These OSNs are found in sensilla (sensory 

hairs filled with lymph) located on the antenna and maxillary palp, and project directly to an 

olfactory glomerulus in the antennal lobe [6]. Monitoring the response of an insect to odorants 

is possible via electroantennography (EAG) and allows for OR deorphanization. In practice, a 

mutant Drosophila OSN that does not respond to odors, called the “empty neuron”, is used to 

generate constructs expressing any transgenic OR of interest [7]. Single sensillum recording is 

then used to monitor the electrophysiological response of a sensillum exposed to odorants, 

characterizing the effect of each ligand on the studied OR expressed in the OSNs. 
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By targeting ORs for pest control, the chances of disturbing other animal species are lower as 

insect and vertebrate ORs are known to be fundamentally different. Indeed, in insects the 

functional odorant-sensing unit is an heteromeric complex made of an Orco subunit (OR 

coreceptor, formerly Or83b) and one or more variable odorant-binding subunits (ORx) as first 

discovered in Drosophila Melanogaster [8], while in vertebrates only the OR, a class A GPCR, 

is needed for detecting odorants [9]. This Orco subunit is highly conserved among insects and 

has homologs in distant insect species [10], contrasting with the high level of variability in ORx 

within and across insect lineages likely related to the ecological niche of each specie [11]. 

Compared to mammalian ORs, insect ORs share the seven transmembrane domains structural 

arrangement of GPCRs, but they are characterized by an inverted membrane topology (Figure 

2a), with an intracellular N- and extracellular C-termini [12]. 

 

Figure 2: Structure and function of insect ORs. a) Orco topology and secondary structure. The structure 

of insect ORs is likely similar b) Apocrypta bakeri Orco tetramer viewed from the side (only 2 opposing 

subunits are shown for clarity, PDB id 6C70). c) Orco homotetramer viewed from the top. d) Signaling 

pathway of insect ORs. Upon odorant binding to ORx, the complex becomes permeable to Na+, K+, and 

Ca2+ ions causing a short depolarization. Simultaneously, a G protein binds to the active ORx, exchanges 

GDP for GTP with its α subunit (Gsα) and then dissociates as an activated Gsα and a Gβγ dimer.  The 

Gsα then binds to adenylyl cyclase (AC) which catalyzes the conversion of ATP to cAMP. Finally, 

cAMP binds to Orco and increases the activity of the ion channel. 
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Regarding signal transduction, the ORx/Orco complex acts directly as a ligand-gated ion-

channel, although the corresponding ion-conducting pore remains to be clearly identified as 

either formed by Orco only or the ORx/Orco interface [13]. The recent cryo-EM elucidation of 

a wasp’s Orco homotetramer (Figure 2b,c) illustrates that the TM segments that line the pore 

and subunit interfaces (S5 to S7, Figure 2a-c) tend to be more conserved than the other segments 

in both Orco and ORx of various insects [14], suggesting a role in the stabilization of subunit 

interactions. It is thus possible that the functional ORx/Orco complex structure could resemble 

that of the homotetramer (Figure 2c), where one or more Orco would be replaced by one or 

more ORx to form an heterotetramer. While the characterization of insect ORs as odorant-gated 

ion channels is not disputed, other intracellular signaling cascades are known to affect their 

activity, giving them an unexpected metabotropic flavor. In fact, G proteins are known to be 

involved in the insect olfactory response [15] and odorant perception is altered by mutations 

affecting the cAMP signaling pathway [16]. The current consensus to explain this concurrent 

signaling pathway is that insect ORs are metabotropically-regulated ionotropic receptors: the 

immediate and short response from the odorant-gated ion channel activation is followed by a 

regulation of the ionotropic response by a slower G-protein-mediated pathway which sensitizes 

the receptor [11, 15, 17, 18] (Figure 2d). This confirms that insect ORs are distinct from 

vertebrates chemosensory GPCRs and as such suggests that odorants impacting insect behavior 

are less likely to simultaneously affect mammals, birds, fish, and amphibians, making the use 

of odorants a viable and valuable option for pest management. 

In this chapter, the main goal was to develop a more environmentally friendly pest control 

strategy than insecticides, by identifying bio-olfacticides i.e., natural volatile molecules able to 

disrupt pest behavior through its olfactive functions. To achieve this, the moth Spodoptera 

littoralis was chosen as a model organism thanks to the recent deorphanization of part of its OR 

repertoire [19] (Figure 3). Two of the receptors, namely SlitOR24 and SlitOR25, were targeted 

as they are known to be expressed at the larval stage and to partake in caterpillar attraction when 

activated [20]. Because of the lack of structural data on the ORs (apart for Orco), we relied on 

a ligand-based in silico protocol to identify the new semiochemicals: this reverse chemical 

ecology approach relies on the link between OR activity and insect behavior to rationally design 

active ligands that can interfere with pest actions. 

In the first publication presented in this chapter, a proof-of-concept machine learning model 

was developed to target SlitOR25 and used to virtually screen a large database of commercially 

available compounds.  
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Figure 3: EAG screening of 17 Spodoptera Littoralis ORs (SlitORs) with 51 odorants at high dosage. 

Readapted from de Fouchier et al. [19]: SlitORs are classified based on a cluster analysis of response 

spectra and odorants are classified depending on their moieties (green: aromatic compounds,  orange: 

terpenes, purple: aliphatics, black: unclassified). 

 

Then, 32 candidate ligands were experimentally tested, both in vitro and in vivo, and revealed 

9 novel agonists for the receptor. Building upon these encouraging results, new QSAR models 

were setup for both receptors in a second publication, while SlitOR25 benefited from a feedback 

loop as the initial dataset was augmented with the newly discovered active and inactive 

compounds. This time, the virtual screening was performed on an in-house focused library of 

natural volatile molecules to bias the search towards putative odorant molecules while 

considering food safety and environment protection concerns in the context of crop protection. 

New natural odorants were validated in vivo for both receptors and elicited an attractive 

response from the caterpillars in behavioral assays. This chapter thus provides an example of 

successful rational design of natural semiochemicals pertaining to pest control, driven by an in 

silico ligand-based approach. 

 

Contributions 

Publication 1 

I analyzed the odorant chemical space of S. littoralis in comparison with Drosophila 

Melanogaster, trained the final QSAR model, and virtually screened a commercial database to 

propose compounds for experimental validation. Hubert Grunig performed preliminary 
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modeling experiments. Our collaborators performed the in vitro and in vivo assays. Gabriela 

Caballero-Vidal and I contributed equally as first authors. 

Publication 2 

I performed the modeling experiments (dataset preparation, machine-learning, applicability 

domain definition) and virtually screened the in-house database of natural compounds to 

identify odorant candidates. Our collaborators performed the in vivo and behavioral assays on 

those molecules. Gabriela Caballero-Vidal and I contributed equally as first authors. 
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Abstract 

Odorant receptors expressed at the peripheral olfactory organs are key proteins for animal 

volatile sensing. Although they determine the odor space of a given species, their functional 

characterization is a long process and remains limited. To date, machine learning virtual 

screening has been used to predict new ligands for such receptors in both mammals and insects, 

using chemical features of known ligands. In insects, such approach is yet limited to Diptera, 

whereas insect odorant receptors are known to be highly divergent between orders. Here, we 

extend this strategy to a Lepidoptera receptor, SlitOR25, involved in the recognition of 

attractive odorants in the crop pest Spodoptera littoralis larvae. Virtual screening of 3 million 

molecules predicted 32 purchasable ones whose function has been systematically tested on 

SlitOR25, revealing 11 novel agonists with a success rate of 28%.  

Our results show that Support Vector Machine optimizes the discovery of novel agonists and 

expands the chemical space of a Lepidoptera OR. More, it opens up structure-function 

relationship analyses through a comparison of the agonist chemical structures. This proof-of-

concept in a crop pest could ultimately enable the identification of OR agonists or antagonists, 

capable of modifying olfactory behaviors in a context of biocontrol. 

Introduction 

Animals are exposed in their environment to a plethora of odorant molecules from a variety of 

chemical structures. Some of these molecules contain valuable information to carry out 

essential activities such as the identification of food sources, oviposition sites, mating partners, 

conspecifics and predators. Animals detect odorants via olfactory sensory neurons (OSNs) 

housed in dedicated olfactory organs, and the mechanisms underlying this detection have been 

particularly well studied in insects and mammals1. In insects, the primary olfactory organs 

consist of the antennae and the maxillary palps, which are covered by olfactory sensilla that 

house the OSNs2. In mammals, OSNs are mainly localized within the olfactory epithelium of 

the nasal cavity. In both insects and mammals, large multigenic families of odorant receptor 

proteins (ORs) mediate odorant recognition, each OSN expressing a single receptor (plus ORco 

in insects, see below) that controls its detection spectrum. These ORs are seven-transmembrane 

(TM) domain receptors3–5, yet mammalian and insect ORs belong to distinct unrelated 

families6. Mammalian ORs are members of the class A rhodopsin-like G protein–coupled 

receptors (GPCR)7, whereas insect OR membrane topology is opposite to that of GPCRs, with 
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a cytoplasmic N-terminus and an extracellular C-terminus8. Furthermore, insect ORs form 

heteromers with a well conserved coreceptor named ORco8–10, and these heteromers are gated 

directly by chemical stimuli11.  

Understanding how the OR repertoire of an animal contributes to odor sensing and adaptation 

to a specific environment relies on the capacity to identify natural ligands of these ORs, a 

process called deorphanization. Yet, the ligands of several mammalian and insect ORs have 

been identified using different expression systems12–19. However, the number of chemicals used 

to stimulate the ORs is limited due to practical handling and duration of the experimentation. 

Consequently, potential stimuli that are tested on ORs of a given species are generally only a 

small portion of the vast array of ecologically relevant odorants. In insects, such sets of potential 

stimuli consisted of up to 100 molecules used to challenge Drosophila melanogaster19 (even 

up to 500 in one study but with only one replicate20) and Anopheles gambiae ORs16,17, but only 

fifty have been used to stimulate the ORs of a moth, Spodoptera littoralis18. Given that the 

potential odor space for an animal is almost unlimited, it is likely that the main ligand(s) of 

some deorphanized ORs still remains unidentified. The problem of selecting the candidate 

molecules to be tested becomes even more critical when trying to identify agonists or 

antagonists of particular ORs that are not natural ligands but could have an impact on the 

behavior of pest and disease vector insects21.  

Several recent studies revealed that the application of machine learning in the context of virtual 

screening opens up the possibility to enlarge animal odor spaces. Machine learning based on 

odorant chemical descriptors allowed predicting receptor–odorant interactions in both insects22–

25 and mammals26, although their ORs do not belong to the same protein families. Notably, 

quantitative structure-activity relationship (QSAR) is an in silico ligand-based method used to 

predict biological activity of untested chemicals, based on chemical features shared by active 

molecules27. In D. melanogaster, virtual screening of more than 240,000 chemical structures 

identified a large array of novel OR activators and inhibitors25. An in silico screening of 0.5 

million compounds identified agonist or antagonist targeting the mosquito CO2 receptor, 

leading to the discovery of new attractants and repellents for those harmful disease vectors24. 

More recently, antagonists for the insect coreceptor ORco have been identified by screening a 

library of 1280 odorant molecules28. In mammals, a more modest virtual screening of 258 

chemicals anyhow identified new agonists of four human ORs26. Although efficient, this 

approach requires prior knowledge on the response spectrum of a given OR and its application 

has thus been restricted to model species with cumulative odorant-receptor functional data. 
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We have recently deorphanized a large array of ORs in the noctuid moth Spodoptera littoralis 

through heterologous expression in Drosophila OSNs18. This offers an unprecedented 

opportunity to test such a computational approach in a non-dipteran insect. Spodoptera littoralis 

is a polyphagous moth29 present in Africa, the Middle East and Southern Europe30. At the larval 

stage, S. littoralis is responsible for extensive damage in a large number of crops of economic 

importance29. Establishing machine learning virtual screening efficiency in such an herbivorous 

pest species will open new routes for the identification of possible agonists and antagonists to 

be used in biocontrol strategies. In addition, screening structurally related molecules can bring 

crucial information to determine structure-function relationships. Here, we focused on S. 

littoralis OR25 (SlitOR25), an odorant receptor that is particularly suitable for this approach. 

Over a panel of ~52 volatile organic compounds, SlitOR25 is strongly activated by nine 

agonists and moderately activated by four.18 Also, it is expressed at both larval and adult stages 

and its activation has been correlated with caterpillar attraction31. Based on properties of the 

previously identified SlitOR25 ligands, we carried out an in silico screening of a chemical space 

of more than three million chemicals, leading to the prediction of 90 potential agonists, of which 

32 were commercially available. The activity of these 32 compounds was further functionally 

tested on SlitOR25 expressed in Drosophila OSNs. We revealed enrichment of SlitOR25 

agonists, with a hit rate of 28%. With the current lack of any OR structure - apart that of ORco32-

, this machine-learning protocol based on chemical molecular descriptors thus represents an 

efficient tool for addressing ligand structure-function relationship in addition to identifying 

novel unexpected ligands for moth ORs, extending their odor space outside the presupposed 

relevant odorants. 

Results and discussion 

In silico prediction of SlitOR25 agonists 

First, the published SlitOR25 chemical space18 was analyzed through calculation of its known 

ligand chemical descriptors and projection on the Drosophila melanogaster Database of 

Odorant Responses (DoOR v2.0)33, considered as prototypical. Figure 1a simplifies this 

chemical space using a t-distributed stochastic neighbor embedding (t-SNE) algorithm in two 

dimensions. Agonists were split into two distinct clusters, suggesting that a machine learning 

model (Fig. 1b) should be able to identify rules to separate them from non-agonists (see 

Supplementary Tab. S1 for a list of the considered molecules). Then, the external dataset to be 
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screened was obtained by filtering ~90 million molecules from the PubChem database as 

described in the method section. More than three million molecules corresponding to organic 

potential volatile molecules were extracted and were evaluated by the optimized Support Vector 

Machine (SVM). After an additional filter associated with the applicability domain obtained by 

a similarity search with the known agonists, 90 molecules were predicted as agonists (Fig. 1c 

and Supplementary Tab. S2). The performance of the SVM is resumed in Tab. 1 and 

Supplementary Tab. S3.  

 

Figure 1: Analysis of insect odorant molecular space and protocol used for Spodoptera littoralis OR25 

(SlitOR25) virtual screening. (a) Visualization of SlitOR25 and Drosophila melanogaster olfactory 

chemical spaces based on a t-distributed stochastic neighbor embedding (t-SNE) dimensionality 

reduction method. The agonists (ago) and non-agonists of SlitOR25 are shown in red and blue, 

respectively, and agonists of D. melanogaster are shown in gray. Chemicals of the training set are shown 

in squares while those of the test set are shown as triangles (b) Workflow of the Support Vector Machine 

(SVM) model based on an 80%/20% split of the initial database. Forty-two molecules constituting the 

training set were used to find optimized SVM parameters while 10 molecules were kept for a blind 

evaluation by the optimized SVM (Supplementary Tab. S1). C-SVC: C-Support Vector Classification. 

(c) Virtual screening of more than three million molecules extracted from the PubChem database 

resulted in 90 agonist candidates. 

  



Chapter I – Reverse chemical ecology targeting ORs applied to pest control 

29 

 

Table 1. 5-fold random split Support Vector Machine performance metrics. %CC: percentage of 

instances correctly classified, MCC: Matthews correlation coefficient. 

Dataset %CC Precision Recall MCC 

Training 0.90±0.03 0.77±0.05 0.84±0.08 0.77±0.07 

Test 0.92±0.06 0.88±0.16 0.91±0.12 0.83±0.12 

 

Table 2. Predicted agonists (this study) and known ligands18 (in bold) tested on SlitOR25.  

Compounds CAS Provider Purity 

1-Naphthaldehyde  66-77-3 Alfa Aesar 97% 

2'-Fluoroacetophenone  445-27-2 Alfa Aesar 97% 

Phenylglyoxal monohydrate  1074-12-0 Acros organics 97% 

Terephthalaldehyde  623-27-8 Alfa Aesar 98% 

Isophthalaldehyde  626-19-7 Alfa Aesar 98% 

1,3-benzenedimethanol 626-18-6 Alfa Aesar 98% 

2-Fluorobenzaldehyde 446-52-6 Alfa Aesar 97% 

2-Fluorobenzyl alcohol 446-51-5 Alfa Aesar 98% 

4-Fluorobenzaldehyde 459-57-4 Alfa Aesar 98% 

4-Flourobenzyl alcohol  459-56-3 Alfa Aesar 97% 

3,4-Difluorobenzaldehyde 34036-07- 2 Alfa Aesar 98% 

3,4-Difluorobenzyl alcohol 85118-05- 4 Alfa Aesar 99% 

2,3,4-Trifluorobenzyl alcohol 144284- 24-2 Alfa Aesar 97% 

Salicylic acid 69-72-7 VWR chemicals 98% 

3-Fluorobenzyl alcohol 456-47-3 Alfa Aesar 98% 

3- Fluorobenzaldehyde 456-48-4 Alfa Aesar 97% 

2,5-Difluorobenzaldehyde 2646-90-4 Alfa Aesar 98% 

2,6-Difluorobenzaldehyde 437-81-0 Alfa Aesar 97% 

3,5-Difluorobenzyl alcohol  79538-20- 8 Alfa Aesar 97% 

3,5-Difluorobenzaldehyde 32085-88- 4 Alfa Aesar 97% 

2,4-Difluorobenzyl alcohol 56456-47- 4 Alfa Aesar 98% 

2,4-Difluorobenzaldehyde 1550-35-2 Alfa Aesar 98% 

2,3-Difluorobenzaldehyde 2646-91-5 Alfa Aesar 98% 

3,4,5-Trifluorobenzyl alcohol 220227- 37-2 Alfa Aesar 97% 

2,4,5-Trifluorobenzyl alcohol 144284- 25-3 Alfa Aesar 98% 

1,3-Indanedione 606-23-5 Alfa Aesar 97% 

p-tolualdehyde 104-87-0 Alfa Aesar 98% 

4'-Fluoroacetophenone 403-42-9 Alfa Aesar 99% 

2',4'-Difluoroacetophenone  364-83-0 Alfa Aesar 98% 

2-Methoxybenzoic acid  579-75-9 Alfa Aesar 98% 

2,3-Difluorobenzyl alcohol  75853-18- 8 Alfa Aesar 97% 

2,5-Difluorobenzyl alcohol  75853-20- 2 Alfa Aesar 98% 

Benzaldehyde 100-52-7 Sigma-Aldrich 99,5% 

Z-3-hexenol 928-96-1 Sigma-Aldrich 98% 

Methyl salicylate 119-36-8 Sigma-Aldrich 99% 

2-phenyl acetaldehyde 122-78-1 Sigma-Aldrich 98% 

Benzyl methyl ether 538-86-3 Sigma-Aldrich 98% 

Methyl benzoate 93-58-3 Acros organics 97% 

Benzyl alcohol 100-51-6 Sigma-Aldrich 99% 

Acetophenone 98-86-2 Acros organics 99% 

E-2-hexenol 928-95-0 Sigma-Aldrich 96% 

E-2-hexenal 6728-26-3 Sigma-Aldrich 98% 

1-hexanol  111-27-3 Sigma-Aldrich 98% 

1-heptanol 111-70-6 Sigma-Aldrich 99% 
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Effect of predicted agonists on SlitOR25 activity 

Among the predicted potential novel agonists of SlitOR25, 32 molecules were commercially 

available at high purity (Tab. 2). These molecules were mainly fluorinated derivatives of known 

ligands (acetophenone, benzyl alcohol, benzaldehyde). To verify whether these were indeed 

agonists of SlitOR25, we performed single-sensillum recordings on D. melanogaster flies 

expressing SlitOR25 in ab3A OSNs instead of the endogenous receptor OR22a, a heterologous 

expression system known as the “empty neuron”34. A first screen with a high concentration of 

the 32 candidate agonists (10-2 dilution) revealed that nine of them elicited a significant 

response (<0.05, Fig. 2), representing a 28% success rate. For comparison, 30% of 138 in silico 

predicted odorants activated the mosquito CO2 receptor in a first round24. Machine learning 

models based on ligand topology predicted 138 antagonists for mosquito ORco, out of which 

45 were active (32%)28. In this last study, it has to be noticed that 58 active antagonists were 

used to feed the machine learning, a number that is much higher than the 13 ligands we used. 

In Drosophila, another study revealed that the success rate of an optimized QSAR greatly 

depends on the receptor (varying from 27% to 71%)25 and that lowest rates were obtained for 

ORs tuned to aromatics (around 30%). Here, we add new evidences that machine learning is of 

great help to discover novel ligands for Lepidoptera ORs.  

Looking in detail at the new ligands identified for SlitOR25, none presented a reverse agonist 

activity (reduction of spontaneous activity), whereas this has been observed for 13% of 

predicted ligands for D. melanogaster ORs when tested on OSNs25. This is likely attributed to 

the nature of the screened receptor, where reverse agonists would be part of a far-removed 

chemical space compared to agonists. However, with the current lack of any structure of an 

insect OR (apart that of ORco)32, providing a mechanistic view on the way agonists work is 

extremely difficult. 

Dose-response analyses  

To compare the responses evoked on SlitOR25 by the nine newly identified agonists to those 

evoked by the previously known natural ligands, we conducted dose-response SSR 

experiments, using dilutions ranging from 10-7 to 10-2, and effective doses 50 (ED50s) were 

calculated. Statistical analyses for the responses of all molecules tested in dose-response are 

detailed in Table 3. 
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Figure 2. Response of Drosophila ab3A OSNs expressing SlitOR25 to 32 candidate ligands 

predicted via ligand-based QSAR approach. Responses are presented ± s.e.m. Grey bars: controls 

(ethanol solvent, blank). Red bars: predicted compounds tested in SSR at high doses (10-2, ethanol 

dilution). Purple bars: known SlitOR25 ligands used as positive controls18 (10-2, ethanol dilution). 

Asterisks indicate statistically significant differences between responses to the odorant and to the solvent 

(Kruskal–Wallis test followed by a Dunnett multiple comparison test, * p<0.05, *** p<0.001, n=10). 

 

For predicted molecules structurally related to the ligand acetophenone (Fig. 3a), statistically 

significant responses (p<0.05) were observed for all tested molecules from 10-6 dilution, but 

ED50s were higher than that of acetophenone although efficiencies were similar. For the newly 

predicted ligands structurally related to benzaldehyde (Fig. 3b), detection threshold started from 

10-4 dilution. Interestingly, their ED50s were all lower than that of benzaldehyde (higher 

potency), although 2-fluorobenzaldehyde efficiency was much lower. The predicted agonist 2-

fluorobenzyl alcohol exhibited a higher activation threshold than the structurally related-known 

ligand benzyl alcohol (Fig. 3c). Our results demonstrated that machine learning was very 

efficient in identifying new strong ligands for SlitOR25.  
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Figure 3. Dose-response activities (measured via SSR) of newly identified and three previously 

identified ligands on SlitOR25 expressed in Drosophila ab3A OSNs, structures and ED50 values. 

SSR responses are presented ± s.e.m. Only molecules with a significant activity in the screening tests 

(p<0.05, 10-2 dilution, Fig. 2) were tested in dose-response using dilutions from 10-7 to 10-2. (a) 

Molecules structurally related to the known ligand acetophenone: 2’-fluoroacetophenone, 4’-

fluoroacetophenone, 2’,4’-difluoroacetophenone. (b) Molecules related to the ligand benzaldehyde: 2-

fluorobenzaldehyde, 3-fluorobenzaldehyde, 2,6-difluorobenzaldehyde, p-tolualdehyde. (c) Molecules 

related to the ligand benzyl alcohol: 2-fluorobenzyl alcohol. 
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Table 3. Statistics for the responses of known (acetophenone, benzyl alcohol and benzaldehyde) 

and new SlitOR25 ligands tested in dose-response test. Solvent: ethanol. 

Asterisks indicate statistically significant differences between responses to the odorant and to solvent (Kruskal–

Wallis test followed by a Dunnett multiple comparison test, * p<0.05, *** p<0.001, n=5). 

 

While acetophenone has been previously reported as the best ligand for SlitOR2518, 2-

fluorobenzaldehyde appeared as equivalent. The best agonists for SlitOR25 were acetophenone, 

2’-fluoroacetophenone, and 2-fluorobenzaldehyde, with ED50 of ~100.10-6. Other 

benzaldehyde derivatives appeared much less potent (ED50 in the range 500 to 1000.10-6), 

followed by two benzyl alcohols (ED50 > 1000.10-6. Independent of the pharmacophore 

approach and by visually inspecting the structures, the presence of a Fluor atom at the ortho 

position in the ring (position 2) maintains the agonist behaviour for the three chemical families 

(aldehydes, ketones, alcohol). Multiple fluorinations had either a weak beneficial effect on 

benzaldehyde derivatives or decreased or abolished the response in other series (Supplementary 

Fig. S1). 

The predicted molecules we functionally tested present strongly intertwined chemical spaces. 

The functional assays we conducted revealed that some were strong agonists and other were 

non-agonists (Supplementary Fig.S1), allowing us to tentatively recapitulate the features 

required for being an agonist through a pharmacophore approach (Fig. S2). However, the model 

was not able to discriminate agonist from non-agonists based on the position of the Fluor atom 

on the aromatic cycle. 

Alternatively, a statistical analysis of the descriptors able to discriminate between agonists and 

non-agonists revealed 105 descriptors out of the 394 processed initially. These descriptors can 

Tested molecules 
Dilutions 

10-7 10-6 10-5 10-4 10-3 10-2 

Acetophenone NS *** *** *** *** *** 

Benzyl alcohol NS NS NS *** *** *** 

Benzaldehyde NS *** *** *** *** *** 

2’-Fluoroacetophenone NS *** *** *** *** *** 

2-Fluorobenzaldehyde NS NS NS *** *** *** 

2-Fluorobenzyl alcohol NS NS *** *** *** *** 

3-Fluorobenzaldehyde NS * *** *** *** *** 

2,6-Difluorobenzaldehyde *** *** *** *** *** *** 

p-Tolualdehyde NS NS *** *** *** *** 

4’-Fluoroacetophenone NS *** *** *** *** *** 

2’,4’-Difluoroacetophenone *** *** *** *** *** *** 
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either be constitutional, topologic, or electronic. They are hardly interpretable but could serve 

as a basis for a further screening protocol. 

Conclusion 

Machine learning widens the chemical space of a moth odorant receptor 

In this study, we have used machine learning to predict novel agonists for SlitOR25, a broadly 

tuned receptor in the Lepidoptera S. littoralis. A Support Vector Machine was fed with 52 

ligands for which the activity was already reported. After optimization, a database of more than 

90 million chemicals was filtered and screened. Out of the three million of potentially useful 

molecules, 90 were predicted as agonists, of which 32 were commercially available. In vivo 

functional assays and dose-response analyses on these latter assessed nine novel molecules as 

moderate or strong agonists for the receptor.  

Modeling has already been shown to provide accurate information and facilitate the selection 

of active molecules on odorant receptors. In insects, it has been applied only in two Diptera 

models, the fruit fly and the mosquito24,25,28. In this study, we reveal that a conventional machine 

learning approach is efficient for the identification of novel agonists for a moth receptor, whose 

amino acid sequence is unrelated to that of Diptera ORs. 

It has to be noticed that none of the novel agonists discovered here has been previously 

described in the literature to be active on moth ORs and most are not described as plant emitted 

volatiles. Although they may not be encountered by insects in the wild, we have anyhow 

extended the chemical space of S. littoralis and the cumulated results open up ligand structure-

function relationship analyses. More importantly, we have opened a closed-loop machine 

learning, where the new highly potent agonists discovered here could be used to train new 

models, further improving predictions in alternative and far removed chemical spaces. 
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Methods 

Reagents 

Reagents were purchased from various vendors (Tab. 2) at the highest available purity (ranging 

from 96 to 99% depending on the molecules) and were dissolved in ethanol. Ethanol: 96% 

purity, Carlo Erba reagents. 

Quantitative Structure Activity Relationship 

Softwares: Knime v3.2.1 was used to build the workflow, chemical descriptors were computed 

with Dragon v6.0.40 and the LibSVM v2.89 was used for the machine learning protocol35. 

 

Training and test set: The initial database of 52 volatiles (Supplementary Tab. S1) was 

obtained from18. The previously identified strong agonists of SlitOR25 were benzenoids 

(acetophenone, benzyl alcohol, benzaldehyde, phenyl acetaldehyde, 1-indanone) and short 

aliphatic alcohols and aldehydes (1-hexanol, 1-heptanol, (Z)3-hexenol, (E)2-hexenal)18, which 

are compounds emitted mainly by flowers and leaves36. The receptor also responds to four other 

molecules (methyl salicylate, methyl benzoate, benzyl methyl ether, (E)2-hexenol), with 

weaker but still significant responses.  The SlitOR25 database thus contains 13 agonists and 39 

non-agonists. It was randomly split into a training set of 42 molecules and a test set of 10 

molecules. Molecules of the training set were considered for the optimization of the model. 

Those of the test set were not used to build the model but to assess its performance. 

 

External test set: 3 306 388 molecules out of 90 million were extracted from the Pubchem 

database37 according to the following physico-chemical properties obtained directly on the 

website: each molecule has to contain a combination of C, H, O, N, F, S, or Cl elements with 

less than 20 heavy atoms, a molecular weight lower than 200 g.mol-1, and a LogP in the range 

[0, 5]. 

 

Chemical space analysis: The Database of Odorant Response (DoOR v2.0)33 was used to 

analyze the S. littoralis chemical space that has been used to train the machine learning model. 

Excluding salts from the analysis, DoOR contains 680 odorants that have been experimentally 
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tested on D. melanogaster. The t-SNE dimensionality reduction method was used to evaluate 

how our database of 52 ligands span a typical insect chemical space. 

 

Molecular descriptors: For each dataset of the QSAR model (training, test and external sets) 

4885 descriptors were computed using the Dragon software (version 6.0.38) based on 3D sdf 

files obtained directly from Pubchem. Constant or near-constant (variance lower than 0.005) 

descriptors were excluded from the database as well as descriptors with at least one missing 

value. Each descriptor of the final matrix was normalized using a min-max protocol (range 

[0,1]) before the split between training and test sets. Note that a normalization before or after 

the split did not affect the nature of the predicted agonists. Redundant descriptors were removed 

(absolute pair correlation greater than or equal to 0.95). The final SVM matrix contained 394 

molecular descriptors. It was used for the t-SNE visualization of the database containing both 

the S. littoralis and D. melanogaster chemical spaces (see SI for details on t-SNE). The 

descriptors were computed on a machine with an intel Xeon with 32 GB of memory. 

 

Setting up the QSAR model: Various numerical models, such as Random Forest or Perceptron 

(data not shown), were tested prior optimizing the chosen supervised machine learning method, 

i.e. Support Vector Machine (SVM). A brute force optimization was applied to assess the 

exhaustive parameter value combination. The C-SVC (C-Support Vector Classification) model 

with a linear kernel was finally used.  

The C-SVC parameters were optimized in a two-step process. First a 5-fold-random split was 

performed with a cost ranging from 1 to 10 with a step of 1. Epsilon varied between 0.0001 and 

0.1 with a step of 0.01. The model’s accuracy remained identical for values in this range. Second 

a more precise 5-fold-random split sampling was performed, with a cost between 0.5 and 1.5 

using a step of 0.1, and epsilon between 0.001 and 0.01 with a step of 0.001. Again, the accuracy 

was identical to that obtained with default settings (accuracy 0.9±0.09). 

The optimized SVM parameters were accordingly set as follows: cost = 1.0, epsilon 0.001. The 

leave-one-out cross validation method was used. Each of the 13 agonists was given a score of 

1 and the non-agonists were given a score of 0. 

 

Applicability domain:  A Tanimoto score, which measures the similarity between compounds 

(and varies between 0 and 1 whereby a value closer to 1 indicates greater similarity) was 
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calculated from Pubchem molecular fingerprints (881 Pubchem molecular descriptors obtained 

from the CDK module of Knime). The use of Pubchem fingerprints has already been shown to 

correctly capture biological activities38. Putative new odorants which has a Tanimoto index 

higher than 0.92 with respect to the Training set were considered belonging to the applicability 

domain. In our case, this corresponds to 90 molecules. 

Single-sensillum recordings of Drosophila olfactory sensory neurons  

Flies were reared on standard cornmeal-yeast-agar medium and kept in a climate and light-

controlled environment (25 °C, 12 h light: 12 h dark cycle). SlitOR25-expressing flies were 

obtained by crossing the line w;Δhalo/CyO;UAS-SlitOr2518 with the line w; Δhalo/CyO;Or22a-

Gal434. For each experiment, a 2- to 8-day-old fly was restrained in a pipette tip with only the 

head protruding. The tip was fixed on a microscope glass slide and one antenna was gently 

maintained using a glass capillary. The preparation was placed under a constant 1.5 L.min−1 

flux of charcoal-filtered and humidified air delivered through a glass tube of a 7 mm diameter, 

and observed with a light microscope (BX51WI, Olympus, Tokyo, Japan) equipped with a 

100X magnification objective. Action potentials from ab3A OSNs were recorded using 

electrolytically sharpened tungsten electrodes (TW5-6, Science Products, Hofheim, Germany). 

The reference electrode was inserted into the eye and the recording electrode was inserted at 

the base of an ab3 sensillum using a motor-controlled PatchStar micromanipulator (Scientifica, 

Uckfield, United Kingdom). The electrical signal was amplified using an EX-1 amplifier 

(Dagan Corporation, Minneapolis, MN, USA), high-pass (1Hz) and low-pass (3 kHz) filtered 

and digitized (10 kHz) through a Digidata 1440A acquisition board (Molecular Devices, 

Sunnyvale, CA, USA) then recorded and analyzed using pCLAMP™ 10 (Molecular Devices).  

The responses of ab3A OSNs were calculated by subtracting the spontaneous firing rate (in 

spikes.s−1) from the firing rate during the odorant stimulation. The time windows used to 

measure these two firing rates lasted for 500 ms and were respectively placed 500 ms before 

and 100 ms after the onset of stimulation (to consider the time for the odorants to reach the 

antenna). Stimulus cartridges were built by placing a 1 cm2 filter paper in the large opening end 

of a Pasteur pipette and loading 10 µl of the odorant solution onto the paper (10-2 dilution in 

ethanol), or 10 µL of ethanol as control. Evaporation time before using the cartridge was 10 

minutes. Odorant stimulations were performed by inserting the tip of the pipette into a hole in 

the glass tube and generating a 500 ms air pulse (0.6 L.min−1), which reached the permanent air 

flux while going through the stimulation cartridge. 



Chapter I – Reverse chemical ecology targeting ORs applied to pest control 

38 

 

The absence of the endogenous receptor OR22a in ab3A OSNs was verified using ethyl 

hexanoate (a strong ligand of OR22a) as a stimulus. Then, the SlitOR25 response spectrum was 

established using the panel of 32 predicted agonists (Tab. 2) and four already known ligands as 

controls. The stimulus cartridges were used at most two times per fly and a maximum of eight 

times in total. The entire panel of molecules was tested ten times on ten different flies 

expressing SlitOR25. Odorants were considered as active if the response they elicited was 

statistically different from the response elicited by the solvent alone (Kruskal–Wallis test 

followed by a Dunnett multiple comparison test, p<0.05).  

For molecules that yielded a statistically significant response, dose-response experiments were 

conducted with odorant dilutions ranging from 10-2 down to 10-7. Each dilution was tested in 

five different flies expressing SlitOR25. ED50 were calculated (except for benzyl alcohol and 

2-fluorobenzyl alcohol) using GraphPad PRISM V.8.1.2 software. 

SlitOR25 pharmacophore hypothesis 

For the generation of the SlitOR25 pharmacophore, we considered a dataset of eleven odorants 

that are active on SlitOR25, as well as fourteen inactive compounds. All these molecules are 

derivatives of acetophenone described in this work.  The pharmacophore was generated with 

up to four features, chosen between H-bond donors/acceptors, hydrophobic sites, and aromatic 

rings. Even considering several conformations for each molecule, the pharmacophore 

hypotheses generated by the software CATALYST (version 4.9.1, Accelrys Inc., San Diego, 

CA, August 2004) were identical, comprised of an aromatic ring and a H-bond acceptor. The 

addition of exclusion volumes did not improve the model and was thus discarded. 
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Supporting information 

Supplementary Table S1. Database of molecules used to train the machine learning model. Agonists 

marked with an * were not considered as strong agonists in the work by de Fouchier et al 201718, but 

the receptor response was still significantly different from solvent. They were thus included in our 

agonist list. 

NAME CAS Classification Training / Test set 

benzaldehyde 100-52-7 agonist training set 

phenylacetaldehyde 122-78-1 agonist training set 

(E)2-hexenal 6728-26-3 agonist training set 

(E)2-hexenol 928-95-0 agonist* training set 

(Z)3-hexenol 928-96-1 agonist training set 

1-hexanol 111-27-3 agonist training set 

1-heptanol 111-70-6 agonist test set 

benzyl alcohol 100-51-6 agonist test set 

acetophenone 98-86-2 agonist training set 

1-indanone 83-33-0 agonist training set 

methyl salicylate 119-36-8 agonist* training set 

methyl benzoate 93-58-3 agonist* training set 

benzyl methyl ether 538-86-3 agonist* test set 

1-octanol 111-87-5 non agonist training set 

(Z)9-14: OH 35153-15-2 non agonist training set 

(Z)7-12:OAc 14959-86-5 non agonist test set 

(Z,E)-9,12-14:OAc 30507-70-1 non agonist training set 

(Z)-jasmone 488-10-8 non agonist training set 

α-copaene 3856-25-5 non agonist training set 

nonanal 124-19-6 non agonist training set 

sulcatone 110-93-0 non agonist test set 

α-humulene 6753-98-6 non agonist training set 

(E)11-14:OAc 33189-72-9 non agonist training set 

TMTT 62235-06-7 non agonist training set 

(Z)11-14:OAc 20711-10-8 non agonist training set 

decanal 112-31-2 non agonist training set 

(Z)9-14:OAc 16725-53-4 non agonist test set 

methyl jasmonate 39924-52-2 non agonist training set 

(E,E)-α-farnesene 502-61-4 non agonist training set 

(±)-linalool 78-70-6 non agonist training set 

(±)-phytol 7541-49-3 non agonist training set 

carvacrol 499-75-2 non agonist training set 

eugenol 97-53-0 non agonist test set 

β-myrcene 123-35-3 non agonist training set 

(±)-nerolidol 7212-44-4 non agonist training set 

hexane 110-54-3 non agonist training set 

β-caryophyllene 87-44-5 non agonist test set 
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DMNT 19945-61-0 non agonist training set 

1-nonanol 143-08-8 non agonist training set 

EDD 3025-30-7 non agonist training set 

3-carene 13466-78-9 non agonist test set 

14:OAc 638-59-5 non agonist training set 

indole 120-72-9 non agonist training set 

(Z,E)-9,11-14:OAc 50767-79-8 non agonist training set 

geraniol 106-24-1 non agonist training set 

(Z)3-hexenyl acetate 3681-71-8 non agonist training set 

β-pinene 127-91-3 non agonist training set 

(E)-ocimene 3779-61-1 non agonist test set 

α-pinene 80-56-8 non agonist training set 

estragole 140-67-0 non agonist training set 

thymol 89-83-8 non agonist training set 

(E,E)-farnesol 106-28-5 non agonist training set 
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Supplementary Table S2. Panel of 90 predicted agonist molecules for SlitOR25. 

NAME CID CAS (if available) 

Salicylic acid 338 69-72-7 

P-Tolualdehyde 7725 104-87-0 

4'-Fluoroacetophenone 9828 403-42-9 

2-Fluoroacetophenone 9947 450-95-3 

2-methoxybenzoic acid 11370 579-75-9 

1,3-Indanedione 11815 606-23-5 

terephthalaldehyde 12173 623-27-8 

Pent-2-enal 12993 764-39-6 

2-oxo-2-phenylacetaldehyde 14090 1074-12-0 

2-Penten-1-ol 15306 1576-95-0 

Isophthalaldehyde 34777 626-19-7 

2',4'-Difluoroacetophenone 67770 364-83-0 

2-Fluorobenzyl alcohol 67969 446-51-5 

2-Fluorobenzaldehyde 67970 446-52-6 

3-Fluorobenzyl alcohol 68008 456-47-3 

3-Fluorobenzaldehyde 68009 456-48-4 

4-Fluorobenzyl alcohol 68022 459-56-3 

4-Fluorobenzaldehyde 68023 459-57-4 

1,3-Benzenedimethanol 69374 626-18-6 

2,4-Difluorobenzaldehyde 73770 1550-35-2 

(2,6-difluorophenyl)methanol 87921 19064-18-7 

2,4-Difluorobenzyl alcohol 91867 56456-47-4 

2'-Fluoroacetophenone 96744 445-27-2 

3H-indene-1,2-dione 123358 16214-27-0 

2,6-difluorobenzaldehyde 136284 437-81-0 

2,5-Difluorobenzaldehyde 137663 2646-90-4 

2,3-Difluorobenzaldehyde 137664 2646-91-5 

Benzocyclobutenone 137953 3469-06-5 

Hydroperoxy(phenyl)methanol 286896 
 

2,3-Difluorobenzyl alcohol 447153 75853-18-8 

2,5-Difluorobenzyl alcohol 522599 75853-20-2 

3,5-Difluorobenzyl alcohol 522721 79538-20-8 

3,4-Difluorobenzyl alcohol 522833 85118-05-4 

hex-3-ene-1,6-diol 549321 67077-43-4 

3,4-Difluorobenzaldehyde 588088 34036-07-2 

3,5-Difluorobenzaldehyde 588160 32085-88-4 

4H-naphthalen-1-one 2754230 19369-49-4 

(2,3,4-trifluorophenyl)methanol 2777027 144284-24-2 

2,4,5-Trifluorobenzyl alcohol 2777035 144284-25-3 

3,4,5-Trifluorobenzyl alcohol 2777040 220227-37-2 

2-phenylmalonaldehyde 3672296 26591-66-2 

2-fluorohexan-1-ol 10441694 1786-48-7 

2-Fluoroindan-1-one 11029998 700-76-5 

2-(4-fluorophenyl)acetaldehyde 11126322 1736-67-0 

1H-inden-1-one 11815384 480-90-0 

Naphthalenone 12446728 57392-28-6 

2-fluoro-2-phenylacetaldehyde 12602096 13344-76-8 

8-methylidenebicyclo[4.2.0]octa-1,3,5-trien-7-one 13167180 88180-40-9 
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6aH-cyclopropa[a]inden-6-one 15732192 
 

2-(3-fluorophenyl)acetaldehyde 15811999 75321-89-0 

2-(2-Fluorophenyl)Acetaldehyde 17770161 75321-85-6 

3-fluorohexan-1-ol 19105682 
 

bicyclo[2.2.2]octa-1,3,5-trien-8-one 19743341 
 

3-oxo-2-phenylprop-2-enal 21258278 
 

4-(fluoromethyl)benzaldehyde 21407901 64747-66-6 

3-(fluoromethyl)benzaldehyde 23080897 96258-62-7 

hydroxy(phenyl)methanolate 23517413 
 

2-(2-oxoethenyl)benzaldehyde 45083582 89002-82-4 

hexa-2,5-dien-1-ol 53752206 28465-64-7 

2,5-Hexadienal 53799150 24058-41-1 

5-fluoroinden-1-one 55266475 
 

3-methylidene-6-(oxomethylidene)cyclohexa-1,4-

diene-1-carbaldehyde 

56633662 
 

2-fluoropent-3-en-1-ol 57051182 
 

fluoro-(4-fluorophenyl)methanol 57224117 
 

(E)-3-Oxo-2-phenylprop-1-en-1-olate 59895713 
 

fluoro-(2-fluorophenyl)methanol 66718278 
 

bicyclo[3.2.2]nona-1(7),5,8-trien-4-one 67715125 
 

[3-(fluoromethyl)phenyl]methanol 68528076 
 

fluoro-(3-fluorophenyl)methanol 69304374 
 

(2,3-difluorophenyl)-fluoromethanol 70187444 
 

Bicyclo[4.1.0]hepta-1,3,5-triene-7-carboxaldehyde 71332736 102073-01-8 

5-fluorohexan-1-ol 72823953 
 

4-fluoro-3H-indene-1,2-dione 83069838 
 

3,3-difluoro-2H-inden-1-one 83669798 
 

bicyclo[3.3.1]nona-1,3,5(9)-trien-6-one 87233327 
 

4-fluorohexan-1-ol 87401947 
 

4-formylbenzoyl fluoride 90160302 
 

2-(2,3-difluorophenyl)-2-fluoroacetaldehyde 90375715 
 

3-fluoro-2,3-dihydroinden-1-one 91882489 
 

naphthalene-1-carbaldehyde 101170232 
 

oxidooxy(phenyl)methanol 101334094 
 

5-fluoro-2-methylidene-3H-inden-1-one 101875887 
 

(3S)-3-(fluoromethyl)-2,3-dihydroinden-1-one 102233594 
 

2-(oxomethylidene)indene-1,3-dione 102578882 
 

2-(2,4-difluorophenyl)-2-fluoroacetaldehyde 105435719 
 

1-(2-ethenyl-4-fluorophenyl)ethanone 108327546 
 

2,4-difluoro-2,3-dihydroinden-1-one 117942772 
 

2-fluoro-3-methyl-2,3-dihydroinden-1-one 118515426 
 

1H-Inden-1-one 119092183 67864-38-4 

3-fluoro-3-methyl-2H-inden-1-one 122380797 
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Supplementary Table S3. Five-fold random split Support Vector Machine performance metrics. TP: 

true positives, TN: true negatives, FP: false positives, FN: false negatives, %CC: percentage of instances 

correctly classified, MCC: Matthews correlation coefficient. 

Dataset TP TN FP FN %CC Precision Recall MCC 

Training 8.17±1.12 29.83±1.35 2.50±0.71 1.50±0.71 0.90±0.03 0.77±0.05 0.84±0.08 0.77±0.07 

Test 3.00±0.76 6.17±0.83 0.50±0.71 0.33±0.44 0.92±0.06 0.88±0.16 0.91±0.12 0.83±0.12 

 

The Mathews correlation coefficient (MCC) is obtained as follows: 

 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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Supplementary Figure S1. Chemical structure of predicted but non-active ligands for SlitOR25. 
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Supplementary Figure S2. SlitOR25 pharmacophore hypothesis. The pharmacophore bears an 

aromatic cycle (orange sphere) and a hydrogen bond acceptor (green spheres). Acetophenone perfectly 

fits into this pharmacophore. Note that non-agonists also fit into the pharmacophore model, emphasizing 

that the model does not accurately discriminate agonists from non-agonists. 
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Supplementary Figure S3. Descriptors statistically significant (amongst the 394 in total) to 

discriminate agonists from non-agonists (t-test) are represented as boxplots. The two samples (agonists 

and non-agonists) were considered as independent. The Benjamini-Hochberg procedure was used to 

consider the false discovery rate (FDR). Using a FDR of 0.1%, the resulting critical p-value was set to 

2.5E-04, which resulted in the identification of the 105 descriptors shown here. Each descriptor values 

were normalized between 0 and 1 for easier visualization. 
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t-SNE calculation: 

The t-SNE implementation of the Python package scikit-learn was used with the following 

parameters: embedding initialization through principal component analysis (PCA) instead of 

random, learning rate of 300, early exaggeration of 15, perplexity of 30, and 1000 iterations. 

Different parameters close to the ones recommended in the package documentation were tested 

until compounds which are structurally similar were plotted close to each other, and dissimilar 

molecules were plotted distant from one another. 
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Abstract 

The concept of reverse chemical ecology (exploitation of molecular knowledge for chemical 

ecology) has recently emerged in conservation biology and human health. Here, we extend this 

concept to crop protection. Targeting odorant receptors from a crop pest insect, the noctuid 

moth Spodoptera littoralis, we demonstrate that reverse chemical ecology has the potential to 

accelerate the discovery of novel crop pest insect attractants and repellents. Using machine 

learning, we first predicted novel natural ligands for two odorant receptors, SlitOR24 and 25. 

Then, electrophysiological validation proved in silico predictions to be highly sensitive, as 93% 

and 67% of predicted agonists triggered a response in Drosophila olfactory neurons expressing 

SlitOR24 and SlitOR25, respectively, despite a lack of specificity. Last, when tested in Y-maze 

behavioral assays, the most active novel ligands of the receptors were attractive to caterpillars. 

This work provides a template for rational design of new eco-friendly semiochemicals to 

manage crop pest populations. 

Keywords 

Semiochemicals, insects, Spodoptera littoralis, behavior, crop protection 

Abbreviations 

AUROC: Area Under the Receiver Operating Characteristics curve  

kNN: k-nearest neighbors 

LOO: leave-one-out 

MCC: Matthews correlation coefficient  

OR: odorant receptor 

OSN: olfactory sensory neuron 

QSAR: quantitative-structure-activity relationship 

SSR: single sensillum recordings 

SVC: Support Vector Classifier 

SVM: Support Vector Machine 
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Introduction 

Insects detect and use odorant information from the external environment to make important 

decisions, such as selecting a mating partner, a food source or an oviposition site [1]. Depending 

on the species ecology, odorant signals can repel or attract insects, or do nothing. Among 

behaviorally relevant molecules, one can cite the moth sex pheromones that attract males from 

some distance away. Because of such olfactory-triggered behaviors, odorant molecules have 

been exploited to develop control strategies against insect pests and disease vector populations 

[2-4] that are integrated in combination with other strategies in Integrated Pest Management. 

For instance, synthetic moth sex pheromones have been used for decades for population 

monitoring or mating disruption [2], aggregation pheromones and/or host plant volatiles are 

used for mass trapping, and non-host or toxic odorants are used as repellents. However, the 

identification of such active molecules is usually difficult, because it mainly relies on bioassay-

guided approaches, including fastidious behavioral assays on multiple individuals.  

In this context, reverse chemical ecology has recently emerged as a powerful alternative to 

identify relevant signals for a given species. This approach proposes to screen olfactory proteins 

linked to a particular behavior in order to identify putative behaviorally active semiochemicals 

[5]. It has been promoted by the recent advances in our understanding of the molecular basis of 

insect olfaction in the last two decades, especially the discovery of their odorant receptors 

(ORs)[6-8]. These ORs are transmembrane proteins primarily responsible for odorant detection. 

They are expressed in olfactory sensory neurons (OSNs) housed in olfactory sensilla, located 

mainly on the antennae. ORs form ion channels together with a subunit called Orco (OR 

coreceptor) that is highly conserved across insect species [9-11]. Odorants activate the 

corresponding OR-Orco complex that transforms the chemical signal into an electrical signal 

that is transmitted to the brain, leading to the behavioral response [12]. Identifying molecules 

that will be active on target ORs remains difficult [4], but ligand-based in silico strategies 

relying on the chemical structures of active compounds have proven quite effective for virtual 

screening of ORs. Quantitative-structure-activity relationship (QSAR) models, which have 

been widely used in medical chemistry [13, 14], have been applied with success to predict the 

activity of semiochemicals on ORs from model insects such as Drosophila melanogaster [15] 

and the mosquitoes Aedes aegypti and Anopheles gambiae [16-19].  

In the present study, we used QSAR models to predict ligands for ORs from a non-model insect 

species, the crop pest moth Spodoptera littoralis, revealing it is possible to use machine learning 

to identify OR agonists outside Diptera [20]. We have previously identified ligands for a large 
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number of S. littoralis ORs (hereafter SlitOR) using heterologous expression in the empty 

neuron system [21]. Moreover, behavioral assays have shown that S. littoralis caterpillars are 

attracted by plant volatiles that activate SlitOR24 and SlitOR25 [22]. With the final aim of 

identifying new attractive semiochemicals for S. littoralis larvae, we thus prioritized these two 

ORs that presented a large overlapping receptive range, including aromatic compounds and 

green leaf volatiles. We virtually screened a judiciously selected natural product library to 

identify novel ligands. This led to success rates of 67% and – even more impressively – 93% 

active molecules on SlitOR25 and SlitOR24, respectively.Finally, we conducted behavioral 

experiments to investigate the activity of the most potent agonists of SlitOR24 and SlitOR25. 

This work, combining machine learning, electrophysiological analyses and behavioral assays, 

not only expands the list of natural SlitOR ligands but also successfully identifies new larval 

attractants that can potentially be implemented in eco-friendly control strategies. Whereas the 

concept of reverse chemical ecology has been successfully applied in conservation biology 

(targeting endangered species [23]) and human health (targeting disease vectors [5]), our work 

now demonstrates its great potential in agriculture. 

Materials and Methods 

Insects  

S. littoralis larvae were reared on a semi-artificial diet [24] under the following conditions: 

22°C, 60% relative humidity and 16:8-h light: dark cycle. Fourth-instar larvae (L4) were used 

for behavioral assays. 

Transgenic D. melanogaster flies expressing SlitOR24 and 25 were obtained by crossing the 

lines w;Δhalo/CyO;UAS-SlitOR24 and w;Δhalo/CyO;UAS-SlitOR25 [21] with the line 

w;Δhalo/CyO;OR22a-Gal4 [25]. Flies were reared on standard nutrient medium made of 

cornmeal, yeast and agar. Flies were kept at 25 °C, under a 12:12-h light: dark cycle. 

Modeling 

Datasets 

The SlitOR24 QSAR model was built using the dataset of 51 experimentally tested molecules 

(10 actives, 41 inactives) from [21]. The SlitOR25 model was built using the same dataset 

enriched with 32 molecules experimentally tested in [20], resulting in a dataset of 83 molecules 

labelled as active (25 molecules) or inactive (58 molecules) against SlitOR25. An in-house 
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library of 158 plant volatile organic compounds (Online Resource 1) was screened by the two 

numerical models. All molecules were collected as SMILES strings, the major tautomers at pH 

7.0 were retrieved with cxcalc (Calculator Plugins, Marvin 18.3.0, 2018, ChemAxon), and the 

resulting molecules were standardized with the standardizer python package v0.1.7 (for salt 

removal and structure normalization). Molecular descriptors were computed directly from the 

standardized SMILES using Dragon v6.0.38. Feature exclusion was performed within the 

software based on the following criteria: constant or near-constant descriptors, descriptors with 

at least one missing value and highly correlated descriptors (absolute pair correlation greater 

than or equal to 0.95 for SlitOR25 and 0.9 for SlitOR24) were excluded. This resulted in 

libraries of 288 and 493 descriptors for SlitOR24 and SlitOR25, respectively. 

The SlitOR24 and SlitOR25 datasets (Online Resource 2) were split in training and test sets 

using a common clustering method, the sphere-exclusion approach, which can select a diverse 

subset of compounds in a dataset. For both sets, descriptors were normalized between 0 and 1, 

and the split was initialized by putting in the test set the compound closest to the center of the 

normalized dataset. At each iteration the new compound to be added to the test set was selected 

using a MinMax procedure, the dissimilarity radius to exclude compounds from the test set was 

set to 4.8 for SlitOR24 and 4.0 for SlitOR25, and the algorithm was stopped once the test set 

reached 24% of the size of the original dataset. This resulted in training sets of 39 molecules (8 

actives, 31 inactives) and 64 molecules (18 actives, 46 inactives), and test sets of 12 molecules 

(2 actives, 10 inactives) and 19 molecules (7 actives, 12 inactives) for SlitOR24 and SlitOR25, 

respectively. For both datasets, each descriptor was then denormalized and normalized only 

based on the training set min and max values. To quantify the uncertainty of prediction resulting 

from the initial choice of compounds in the training and test sets, five alternative splits were 

generated using the same strategy. The same sphere-exclusion approach was used to define the 

new training/test sets with initial compounds chosen randomly and not at the center of the 

normalized distribution as for the final model. Due to imbalanced data (less active than inactive 

compounds) and to facilitate comparison, only the first five splits that had the same activity 

distribution (active/inactive) as in the split used for the final model were investigated. 

 

Machine-Learning 

QSAR models were trained and evaluated using Weka v3.8.2 [26]. Several classification 

algorithms were optimized in “leave-one-out” (LOO) cross-validation loops: C-SVC (LibSVM 

v1.0.10) (SVC: Support Vector Classifier; SVM: Support Vector Machine), k-nearest neighbors 
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(kNN), RandomTree, DecisionTree, and RandomForest. Cost-sensitive models were also tested 

without providing a significant improvement in performance. Once the optimal algorithm and 

hyperparameters were identified for each OR based on Matthews correlation coefficient (MCC) 

(Table 1), the final models were trained on the full training set and parametrized as follow: for 

SlitOR24 a RandomForest was chosen and trained with 100 trees, unlimited maximum depth 

for each tree, and no feature randomly chosen; for SlitOR25 a kNN classifier (IBk) was chosen 

with 9 neighbors, weighted by the inverse of the Euclidean distance, and a brute force neighbor 

search. Finally, the performances of the SlitOR24 and SlitOR25 models were assessed on the 

test sets. 

 

Applicability Domain 

A similarity distance approach [27] was used to estimate the applicability domain of the two 

selected models. A distance cutoff is defined as 𝐷𝑐 = 〈𝐷〉 + 𝑍𝜎 where 〈𝐷〉 and 𝜎 are the mean 

and standard deviation of Euclidean distances of each training set compound with their nearest 

neighbor in the descriptor space, and Z is an empirical parameter. The parameter Z was 

incremented until all training set compounds had their distance with their kNN lower or equal 

to Dc. For SlitOR25, we kept the same number of neighbors as in the model (k=9) and for 

SlitOR24, we used k=6 based on our benchmark of different learners during the training phase. 

For each external compound, its distance with the kNN was measured and a reliability score 

was estimated as 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 +
𝐷−𝐷𝑐

𝐷𝑐
. 

Single sensillum recordings on neurons expressing SlitOR24 and SlitOR25 

Single sensillum recordings were performed on Drosophila ab3A neurons expressing SlitOR24 

or SlitOR25, using fly lines previously generated [21]. A 2 to 8-day-old fly was immobilized 

in a pipette tip, only the head sticking out. The fly was placed on a microscope glass slide under 

a constant 1.5 L.min-1 flux of charcoal-filtered and humidified air delivered through a glass tube 

of a 7 mm diameter. The experiments were monitored using a light microscope (Olympus 

BX51WI, Tokyo, Japan) equipped with a 100X magnification objective. Action potentials from 

ab3A OSNs were recorded using electrolytically sharpened tungsten electrodes (TW5-6, 

Science Products, Hofheim, Germany). One reference electrode was inserted into the eye and 

the recording electrode was inserted at the base of an ab3 sensillum using a motor-controlled 

PatchStar micromanipulator (Scientifica, Uckfield, United Kingdom). Odorants were 

purchased from Sigma-Aldrich (Saint-Louis, MO, USA). Stimulus cartridges were built by 
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placing a 1 cm² filter paper in a Pasteur pipette and loading 10 μl of the odorant solution onto 

the paper (10-2 dilution in paraffin oil), or 10 μL of paraffin oil or a paper without any odorant 

as controls. Odorant stimulations were performed by inserting the tip of the pipette into a hole 

in the glass tube and generating a 500 ms air pulse (0.6 L.min-1). The responses of ab3A OSNs 

were calculated by subtracting the spontaneous firing rate (in spikes.s-1) from the firing rate 

during the odorant stimulation. 

The stimulation panel consisted, for each SlitOR, of an already known agonist [21] used as 

positive control (benzyl alcohol for SlitOR24 and acetophenone for SlitOR25), paraffin oil as 

a negative control, 34 predicted agonists and 5 molecules randomly chosen among the predicted 

non-agonists for both ORs (Online Resource 3). Each stimulus cartridge was used at maximum 

eight times in total. The panel of molecules was tested on five (for predicted non-agonists) to 

eight-ten (for predicted agonists) different flies expressing SlitOR24 or SlitOR25. Odorants 

were considered as active if the response was statistically different from the response elicited 

by the solvent alone (Kruskal–Wallis test followed by a Dunnett multiple comparison test, 

p<0.05).  

Larvae behavior in Y-tube olfactometer  

Behavioral experiments were performed in a Y-tube olfactometer. The olfactometer consisted 

of a 2.1 cm inner diameter glass Y-tube, the main segment was 13 cm long, and each of the two 

arms was 9.5 cm long. L4 larvae were used and starved overnight (16 to 20 hours starvation) 

prior to the experiments. All experiments were performed under red light, to avoid biases due 

to visual cues. Charcoal-purified air was delivered into each arm of the olfactometer at a flow 

rate of 0.5 L.min-1, stabilized using a flowmeter (Key Instruments, Trevose, PA, USA) to ensure 

that equal air streams entered each arm. The temperature of the room was maintained at 24 ° C 

during all tests. The experimental set-up was first tested with different controls: i) paraffin oil 

in each arm, a configuration expected to induce no larval choice, ii) a 10-2 dilution of benzyl 

alcohol, an odorant known to induce larvae attraction [22], in one arm and paraffin oil in the 

other arm (larval choice expected) and iii) a 10-2 dilution of (E)-ocimene, a molecule inactive 

on larval behavior [22], versus paraffin oil (no larval choice expected). Seven of the strongest 

agonists of both SlitOR24 and 25 were tested for behavioral activity. Odorants were diluted in 

paraffin oil (dilutions 10-2 and 10-3). Ten µl of diluted odorants or control (paraffin oil) were 

loaded on a filter paper. A paper with solvent alone was placed in one arm and a filter paper 

with the odorant dilution in the other arm. One larva at a time was placed in the main arm of 
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the olfactometer and the behavior was recorded during 10 minutes with a digital camera located 

above the device. Each larva was tested only once. To avoid any bias during the test, the 

olfactometer was switched from one side to the other between each test and up to three times, 

before washing the olfactometer with TFD4 detergent (Franklab, Montigny-le-Bretonneux, 

France) diluted at 3% for 30 minutes, then rinsing with distilled water and 95% ethanol. Once 

dry, all glass parts were put in an oven at 200 °C overnight. We analyzed two different 

parameters: 1) the choice made by the caterpillar and 2) the time spent in each arm. We 

considered that the caterpillar made a choice when three quarters of its body length entered an 

arm. Larvae that did not make a choice within ten minutes were not included in the statistical 

analysis. This explains the variable numbers of replicates for each test, ranging from 27 to 34. 

All behavioral assays were carried out within a 4 h time interval during larvae photophase.  

Statistics 

Single sensillum recording data were analyzed using a Kruskal–Wallis test followed by 

nonparametric multiple comparisons using ‘nparcomp’ R package (type: Dunnett). For 

behavioral data, a Chi-squared test for given probabilities was used to verify the significance 

of caterpillars’ choice and a paired Student t-test was used to compare the time spent by larvae 

in each arm of the Y-tube olfactometer. 

Results 

Virtual screening of SlitOR24 and SlitOR25 

Model performance 

Each SlitOR model was parameterized with a LOO strategy, re-trained on the full training set 

once the best parameters were identified, and validated using the independent test set (Table 1). 

For SlitOR24, due to the limited number of active molecules in the training set, the model 

appeared to be mostly tuned to classify correctly the non-agonists. For SlitOR25, the model 

came with the benefit of an expanded applicability domain. However, the decrease in 

performance on the test set, compared to a previous preliminary model we conducted on this 

OR [20], is probably linked to the increased chemical diversity and thus to the complexity of 

the problem. Overall, both current SlitOR24 and SlitOR25 models had satisfying predictive 

abilities with MCC ≥ 0.4, and AUROC (Area Under the Receiver Operating Characteristics 

curve) ≥ 0.8, and were suitable to prioritize compounds for experimental testing.  
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Table 1. Performance evaluation of the SlitOR24 and SlitOR25 QSAR models using different 

metrics. LOO: performance of the best model using a leave-one-out cross-validation strategy, TP: true 

positives, TN: true negatives, FP: false positives, FN: false negatives, FPR: false positive rate, MCC: 

Matthews correlation coefficient, AUROC: area under the receiver operating characteristics curve. 

 Dataset TP TN FP FN Accuracy Precision Recall FPR MCC AUROC 

SlitOR24 

LOO 4 29 2 4 0.85 0.67 0.50 0.06 0.49 0.83 

Training 7 31 0 1 0.97 1.00 0.88 0.00 0.92 0.99 

Test 1 9 1 1 0.83 0.50 0.50 0.10 0.40 0.80 

SlitOR25 

LOO 15 34 12 3 0.77 0.56 0.83 0.26 0.52 0.84 

Training 18 46 0 0 1.00 1.00 1.00 0.00 1.00 1.00 

Test 5 10 2 2 0.79 0.71 0.71 0.17 0.55 0.89 

 

To estimate the generalization error, five similar models were generated using alternative splits 

for preparing the training and test sets (Online Resources 4 and 5). When changing the 

distribution of compounds in the training and test sets, the overall performance of the predictive 

models remained similar compared to the final model. In details, the MCC was still above 0.4 

and the AUROC ranged from 0.7 to 0.9 for both SlitOR24 and 25 models except for two 

alternate SlitOR24 models. For these two, no true positive compound was identified, mostly 

due to the small size of the dataset. One has to note that the false positive rate (i.e. the number 

of false positive prediction over the total number of inactive compounds) was higher for 

SlitOR25 models (0.17-0.50) than for SlitOR24 ones (0.00-0.10) and may lead to incorrectly 

classify non agonists and overestimate the number of compounds to be experimentally tested.  

The current SlitOR25 and SlitOR24 machine learning models were used to virtually screen an 

in-house library of 158 natural volatile organic compounds. 28 and 67 molecules were predicted 

as agonists and within the applicability domain of SlitOR24 and SlitOR25 models, respectively, 

with 27 molecules in common (Online Resource 3). The 67 molecules predicted as agonists for 

SlitOR25 were re-screened by our previously published model [20] and 20 of them were 

predicted as agonists by both SlitOR25 models (Online Resource 3). 
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Electrophysiological responses of SlitOR24 and SlitOR25 to the predicted agonists and 

non-agonists 

To validate in silico predictions, we performed single sensillum recordings on Drosophila 

OSNs expressing SlitOR24 or SlitOR25 with a stimulus panel containing the 27 molecules 

predicted as agonists for both SlitOR24 and SlitOR25, 6 molecules predicted as agonists only 

for SlitOR25 by both the current and the published SlitOR25 models, and one molecule 

predicted as an agonist only for SlitOR24. We also tested five molecules predicted as non-

agonists for both receptors (Online Resource 3) and one already known agonist for each OR as 

control [21]. In total, we tested 39 molecules on both receptors (28+11 and 33+6 predicted 

agonists+non-agonists for SlitOR24 and SlitOR25, respectively). As expected, both ORs 

responded to their respective positive control (Fig. 1).  

For SlitOR24, 26 predicted agonists out of 28 were active (Fig. 1A), representing a 93% success 

rate of prediction. Among the six agonists predicted only for SlitOR25, four were active on 

SlitOR24 although they were not predicted as agonists by the model. Six molecules from the 

panel triggered responses above 100 spikes.s-1 (1-pentanol, (Z)-2-hexenol, 2-hexanol, (E)-3-

hexenol, 2-heptanol and 2-phenylethanol, the latter eliciting the highest response), thus being 

as active as the previously identified agonist benzyl alcohol. Eight agonists triggered responses 

between 50 and 100 spikes.s-1 (1-hexen-3-ol, 2-hexanone, benzyl cyanide, 3-heptanone, 2-

heptanone, furfuryl alcohol , 4-methyl-2-pentanol and heptanal).  

For SlitOR25, 22 out of the selected 33 predicted agonists were active, representing a 67% 

success rate (Fig. 1B). As expected, the agonist predicted only for SlitOR24 did not elicit any 

SlitOR25 response. Two molecules from the panel triggered responses above 100 spikes.s-1 (2-

heptanol and benzyl cyanide) and were more active than the previously identified agonist 

acetophenone, and six triggered responses between 50 and 100 spikes.s-1 (2-phenylethanol, (E)-

3-hexenol, heptanal, 1-hexen-3-ol, 3-heptanone, 2-heptanone). None of the six non-agonists 

predicted for SlitOR25 elicited a significant response. In short, with a recall of 0.84 vs 1.00, 

both models were highly sensitive, even if the SlitOR25 model was less precise (0.93 vs 0.67) 

and specific (0.75 vs 0.35) than the SlitOR24 one, as expected by the evaluation metrics of the 

trained models (Online Resource 6). 
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Fig. 1 Responses of SlitOR24 and SlitOR25 to predicted ligands. Single-sensillum recording (SSR) 

responses (spikes.s-1) of Drosophila ab3A neurons expressing SlitOR24 (A) and SlitOR25 (B) during 

stimulation with QSAR model-predicted ligands. Grey bars represent negative controls (solvent and 

filter paper without odorant) and positive controls (known ligands for the respective OR [21]). Purple 

bars represent predicted agonists. Turquoise bars represent predicted non-agonists. All molecules were 

tested at a 10-2 dilution in paraffin oil. Box plots show the median (line), 25–75% percentiles (box), 10–

90% percentiles (whisker), and outliers (dots). Asterisks indicate statistically significant differences 

between responses to the odorant and to the solvent alone (Kruskal–Wallis non parametric ANOVA 

followed by a Dunnett’s multiple comparison test, ** p<0.01, *** p<0.001, n=8-10 for predicted 

agonists, n=5 for non-agonists)  

 

Behavioral effect of newly identified agonists  

The newly identified OR agonists were then tested for their effect on larvae behavior. In all 

behavioral experiments, larvae were starved for 16 to 20 hours since previous experiments have 

shown that starved larvae are more motivated to orientate toward odor sources than satiated 

larvae and that such starvation has no impact in larval survival or mobility [28]. Before testing 
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the effect of SlitOR24 and SlitOR25 ligands on the larval behavior, the experimental setup was 

first validated using different controls: paraffin oil (solvent), benzyl alcohol (known attractant) 

and (E)-ocimene (neutral) at dilution 10-2 [22]. As expected, larvae did not make any choice 

when exposed to both arms loaded with solvent. Larvae were statistically more attracted to the 

arm containing benzyl alcohol than to the control arm whereas no choice was observed using 

(E)-ocimene (Fig. 2). Then, seven of the molecules that elicited the highest neuronal responses 

in flies expressing SlitOR24 and SlitOR25 [(Z)-2-hexenol, (E)-3-hexenol, 2-phenylethanol, 

benzyl cyanide, 2-heptanol, anisole and 2-hexanone] were used in the same behavioral assay at 

two different dilutions (10-2 and 10-3).  

 

 

Fig. 2 Behavioral responses (percentage of choice) of S. littoralis larvae to predicted ligands shown 

to be active on SlitOR24 and SlitOR25. (A) Experimental setup used to study caterpillar’s behavior. 

In this device, there is an air inlet, which circulates through two filters (active carbon and water bubbles), 

from where it passes to two flowmeters, to finally reach the Y-tube olfactometer. At the base of the 

olfactometer, the air outlet and the starting point for the larva are indicated. (B) Percentage of larval 

choice to (left/right): blank/blank (paraffin oil), neutral control (paraffin oil/ocimene), positive control 

(paraffin oil/benzyl alcohol), active ligands on ORs (paraffin oil/compounds). Dark grey bars at right 

represent the caterpillar’s choice at 10-2 dilution, and light grey bars represent caterpillar’s choice at 10-

3 dilution. Asterisks indicate statistically significant preferences of larvae for the odorant side (Chi-

squared test for given probabilities, * p<0.05, ** p<0.01, *** p<0.001, NS: not significant). Numbers 

of replicates (n) are indicated on the right. 
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Results showed that for the 10-2 dilution, all molecules tested were attractive to the larvae (Fig. 

2), with percentages of choice between 69.6% (2-heptanol) and 96.5% (2-phenylethanol). At 

the 10-3 dilution, larvae retained preference for three compounds: (Z)-2-hexenol, (E)-3-hexenol 

and 2-phenylethanol. Regarding the time spent in each arm (Fig. 3), larvae spent significantly 

more time in the arm containing five out of the seven molecules when tested at the 10-2 dilution: 

benzyl cyanide, (Z)-2-hexenol, 2-phenylethanol, anisole and 2-hexanone. At the 10-3 dilution, 

larvae spent more time in the arm containing three molecules: (E)-3-hexenol, 2-phenylethanol 

and 2-hexanone. Strikingly, the time spent by larvae on the arm containing (E)-3-hexenol was 

higher at the lowest dilution.  

 

 

Fig. 3 Behavioral responses (time in each arm) of S. littoralis larvae to predicted ligands shown to 

be active on SlitOR24 and SlitOR25. Time (in seconds) spent by the larvae in each arm on the Y-tube 

olfactometer. Bars at left represent the time spent in the arm containing the solvent (paraffin oil). Bars 

at right: Dark grey bars represent the time spent in the arm containing the odorant at 10-2 dilution, and 

light grey bars represent the time spent in the arm containing the odorant at 10-3 dilution. Asterisks 

indicate statistically significant differences between the time spent by larvae in each arm (Paired Student 

t-test, * p<0.05, ** p<0.01, *** p<0.001, NS: not significant). Numbers of replicates are indicated on 

the right and error bars indicate SEM. 
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Discussion 

Reverse chemical ecology has recently appeared as a promising approach to identify 

behaviorally active semiochemicals that could be used for pest control strategies. In 

Helicoverpa armigera caterpillars, a combination of transcriptomic analyses, functional 

characterization of ORs and behavioral assays led to the identification of OR ligands that are 

behaviorally active (attractive and repulsive) for first-instar larvae [29]. A link between the 

activation of some ORs and attraction was also demonstrated in another species of pest 

caterpillars, the cotton leafworm S. littoralis [22]. These works thus showed that caterpillar ORs 

have a great potential as targets in reverse chemical ecology, yet the chances to identify 

behaviorally active molecules remain limited by the number of molecules tested on the target 

ORs. The incorporation of in silico modeling to the functional studies could fill this gap, since 

it has proven efficient when applied to the identification of new mosquito repellents [5, 18, 19]. 

Recently, we have published a proof-of-concept that revealed that such an approach can be 

extended to crop pest ORs [20]. Focusing on a single S. littoralis OR, SlitOR25, we could 

predict new agonists via machine learning that were indeed active on this OR, with a reasonable 

success rate of 28%. However, we did not investigate their behavioral activity. Anyhow, the 

chemical structures of the newly identified SlitOR25 agonists precluded their use for pest 

control, as most agonists were fluorinated compounds that cannot be used in the field [20].  

In the present work, the objective was threefold. The first one was to improve our machine 

learning model for the prediction of agonists. The second objective was to predict natural, plant 

derivate, non-toxic and affordable agonists that would be compatible with pest control. The last 

objective was to investigate the behavioral activity of predicted agonists. To reach these 

objectives, we focused on the broadly tuned receptors SlitOR24 and SlitOR25 [21], whose 

activation has been linked to larvae attraction [22] and that were thus highly relevant for a 

reverse chemical ecology strategy. More, SlitOR25 has been used to establish the machine 

learning proof-of-concept on Lepidoptera ORs [20], and the data acquired (additional ligands) 

are perfectly suited to be used for model improvement. 

First, we revealed that the QSAR models are highly precise since 67% and 93% of predicted 

agonists triggered a response in Drosophila olfactory neurons expressing SlitOR25 and 

SlitOR24, respectively. Even if the models lack specificity, notably for SlitOR25, they were 

sufficiently accurate to predict many new agonists. The SlitOR24 success rate was notably 

higher than what has been reported previously for Diptera. In Drosophila, more than 240,000 

compounds were first screened in silico to find new OR ligands [15]. OR-optimized descriptors 
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allowed to rank the untested molecules, identifying the top 500 hits for each OR. Predicted 

compounds were experimentally tested on nine ORs, showing 71% of success rate compared 

to only 10% when using non-predicted odors [15]. In mosquitoes, Tauxe et al. 2013 obtained a 

~30% success rate when trying to identify CO2 receptor activators by using molecular 

descriptors [18]. In a second round of in silico prediction, they increased prediction accuracy 

through a SVM-based approach, yielding an improved success rate of 74%. In the present work, 

while the SlitOR24 model appeared exceptionally precise to identify true agonists (93%), it has 

to be noticed that it did miss some of them. Some of the molecules predicted as agonists only 

for SlitOR25 appeared to be agonists for SlitOR24 (false negative rate of 18%). Reversely, the 

SlitOR25 model was less efficient to identify true agonists (precision of 67% and a false 

positive rate of 65%), but was highly sensitive and succeeded in predicting all the non-agonists. 

More, combining the SlitOR25 model with the previously published one [20] (Online Resource 

3) guided us to prioritize the most promising compounds. As already reported in mosquitoes 

[18], such results suggest that model combination, in addition to cumulative experimental data 

to feed models, offer a way to improve insect OR ligand identification. 

One has to keep in mind that our models are based on experimental data obtained from ORs 

expressed in the empty neuron system of Drosophila, which lacks perireceptor proteins such as 

odorant-binding proteins and odorant-degrading enzymes [12]. We cannot rule out that 

response spectra of caterpillar ORs expressed in a fly neuron may somehow differ from the 

response of the corresponding caterpillar neurons, leading to a potential confounding effect on 

the modeling. However, we have previously shown that, when expressed in the empty neuron 

system, SlitOR24 and SlitOR25 exhibit exactly the same response spectrum than the two 

corresponding olfactory neurons from S. littoralis adult antennae (see Supplementary Figure 

S3 in [21]). Thus, we can be confident in the use of models based on empty neuron SSR data 

for identifying molecules active on S. littoralis caterpillars.  

To reach the second objective, the QSARs have been used here to screen an in-house virtual 

library of plant compounds, while our previous efforts focused on a large subset of the Pubchem 

database selected on physico-chemical properties that led to the identification of structurally 

related, mainly fluorinated, predicted ligands [20]. Through this approach, we have identified 

new agonists for SlitOR24 and SlitOR25 (more or equally active as previously identified 

ligands), greatly extending their initially described response spectra [21]. Both ORs presented 

a large overlapping receptive range, including aliphatic alcohols, aromatic compounds and 

green leaf volatiles. Interestingly, a large majority (74%) of predicted ligands for SlitOR25 
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were also active on SlitOR24. This suggests that the binding pocket of both ORs would be quite 

similar and opens up further studies on structure-function relationships. The tridimensional 

structure of an insect (Machilis hrabei)  OR has been recently elucidated [30] and even if the 

sequence identity between MhraOR5 and SlitOR24 or 25 is low (<20%), one can try to 

extrapolate the corresponding binding pockets. Interestingly, in line with the experimental data, 

a multiple sequence alignment suggests that the residues from the putative odorant-binding sites 

of SlitOR24 and 25 are highly conserved (Online Resource 7). 

The behavioral effects of the new ligands that elicited high neuronal responses were 

investigated on larvae, and all proved to be attractive. These data not only confirmed the former 

hypothesis that SlitOR24 and OR25 activation is linked to larval attraction [22], but also 

demonstrated that reverse chemical ecology is efficient in predicting behaviorally active 

odorants. Interestingly, many of these new attractants for S. littoralis larvae have never been 

reported to be relevant cues for adults or larvae on this species. Among the new ligands for 

SlitOR25, benzyl cyanide (a nitrogenous aromatic compound) induced the highest OSN firing 

rate and a high attraction rate. It has been shown previously that benzyl cyanide is a herbivore-

induced volatile emitted by diverse plants, like the black poplar Populus nigra and Brussels 

sprouts Brassicae oleracea [31, 32]. One the one hand, such signal indicates actual presence of 

herbivores, and thus the possible presence of adequate food for larvae. On the other hand, 

benzyl cyanide has also been reported to be attractive to different parasitoid species that use 

this cue to detect the presence of host larvae [31, 32]. Benzyl cyanide is also naturally emitted 

by some insect species, and is notably known as a male anti-aphrodisiac pheromone in the desert 

locust [33] as well as in the butterfly Pieris brassicae. In this latter species, it is transferred to 

the females while mating, making them less attractive to conspecific males [34]. In turn, this 

anti-aphrodisiac is exploited by parasitoid wasps such as Trichogramma brassicae to detect laid 

eggs for further parasitization [35]. The most potent attractant for S. littoralis larvae at both 

doses tested was 2-phenylethanol, an aromatic compound that induced the highest firing rate in 

OSNs expressing SlitOR24. 2-phenylethanol is released by flowers, fruits or vegetative tissues 

of a large array of plants from a multitude of families [36] and it may be important for caterpillar 

foraging behavior. It is documented as one of the most attractive compounds - together with 

phenylacetaldehyde - for H. armigera adults [37, 38] and elicited high neuronal responses in 

Heliothis virescens females [39].  

Although we propose here a probable role in caterpillar foraging behavior, the potential 

ecological significance of these S. littoralis larval attractants remains to be determined, as well 
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as their behavioral effects on adults, in which SlitOR24 and 25 are also expressed in antennae 

[40, 41]. Anyhow, our work shows that reverse chemical ecology can be applied efficiently to 

identify behaviorally-active volatiles that could ultimately implement semiochemical-based 

control strategies against agricultural pests. Improved membrane protein tridimensional 

structure resolution [30, 42] and prediction [43, 44] will give access to structural details of the 

odorant-binding pocket of insect ORs then contributing to expand the chemical space to be 

explored by structure-based virtual screening. 
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Online Resource 2. Dataset used for training and validating the QSAR model. 
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lab/SlitOR_data/blob/main/supp%20data%202%20SlitOR24%2B25_dataset.xlsx 
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Online Resource 3. Molecules predicted as agonists (A) or non-agonists (N) within the applicability 

domain of SlitOR24 and SlitOR25 (previous model from [20]) models. Molecules that were further 

experimentally tested on both ORs are indicated (Yes/No) as well as their activity on the corresponding 

OR (Yes/No). 

Molecules CAS 
SlitOR24 

prediction 

SlitOR25 

prediction 

Previous 

SlitOR25 

prediction 

Molecules 

tested in 

SSR 

Activity 

on 

SlitOR24 

Activity 

on 

SlitOR25 

3-heptanone  106-35-4 A A A Yes Yes Yes 

anisole 100-66-3 A A A Yes Yes Yes 

1-hexen-3-ol 4798-44-1 A A A Yes Yes Yes 

ethyl benzene 100-41-4 A A A Yes No Yes 

(E)-3-hexen-1-ol 928-97-2 A A A Yes Yes Yes 

(Z)-2-hexen-1-ol 928-94-9 A A A Yes Yes Yes 

2-heptanol 543-49-7 A A A Yes Yes Yes 

1-pentanol 71-41-0 A A A Yes Yes Yes 

2-heptanone  110-43-0 A A A Yes Yes Yes 

2-hexanone 591-78-6 A A A Yes Yes Yes 

2-hexanol  626-93-7 A A A Yes Yes Yes 

hexanal 66-25-1 A A A Yes Yes Yes 

benzyl cyanide  140-29-4 A A A Yes Yes Yes 

heptaldehyde  111-71-7 A A A Yes Yes Yes 

4-methylanisole 104-93-8  A A Yes Yes Yes 

2-phenyl ethanol 60-12-8  A A Yes Yes Yes 

ethyl valerate 539-82-2  A A Yes No Yes 

4-ethylphenol 123-07-9  A A Yes Yes Yes 

2-methyl butyl 

acetate 
624-41-9  A A Yes Yes Yes 

propyl butyrate 105-66-8  A A Yes No Yes 

2-butyl acetate  105-45-4 A A  Yes Yes No 

furfuryl alcohol 98-00-0 A A  Yes Yes No 

formic acid butyl 

ester 
592-84-7 A A  Yes Yes No 

methyl-2-

methylbutyrate 
868-57-5 A A  Yes No No 

1-penten-4-ol 625-31-0 A A  Yes Yes No 

3-hexanone  589-38-8 A A  Yes Yes Yes 

ethyl butyrate 105-54-4 A A  Yes Yes No 

2-methyl-1-butanol  137-32-6 A A  Yes Yes No 

2-pentanol  6032-29-7 A A  Yes Yes No 

2-methyl-3-hexanol 617-29-8 A A  Yes Yes No 

propyl acetate 109-60-4 A A  Yes Yes No 

butyl isothiocyanate 592-82-5 A A  Yes Yes No 

propyl propionate 106-36-5 A A  Yes Yes Yes 

4-methyl-2-pentanol  108-11-2 A   Yes Yes No 

2-methoxy-4-

vinylphenol 
7786-61-0  A  No   

isopropyl acetate 108-21-4  A  No   

1-butanol 71-36-3  A  No   

allyl acetate 591-87-7  A  No   

L-carvone 6485-40-1  A  No   
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Molecules CAS 
SlitOR24 

prediction 

SlitOR25 

prediction 

Previous 

SlitOR25 

prediction 

Molecules 

tested in 

SSR 

Activity 

on 

SlitOR24 

Activity 

on 

SlitOR25 

D-carvone 2244-16-8  A  No   

isoamyl acetate  123-92-2  A  No   

isobutyl acetate 110-19-0  A  No   

ethyl (S)-(-)-lactate  687-47-8  A  No   

4-butyrolactone  96-48-0  A  No   

2,3-butanediol  513-85-9  A  No   

ethyl 3-

hydroxybutyrate 
5405-41-4  A  No   

2-pentanone 107-87-9  A  No   

p-xylene 106-42-3  A  No   

methionol 505-10-2  A  No   

ethyl isovalerate 108-64-5  A  No   

methyl (S)-(-)-lactate 27871-49-4  A  No   

3-pentanone 96-22-0  A  No   

ethyl 3-

methylcrotonate 
638-10-8  A  No   

ethyl propionate 105-37-3  A  No   

isopropyl butyrate 638-11-9  A  No   

ethyl tiglate 5837-78-5  A  No   

4-methylvaleric acid  646-07-1  A  No   

isobutyl isobutyrate 97-85-8  A  No   

propyl isothiocyanate 628-30-8  A  No   

2-methylbutyric acid 116-53-0  A  No   

ethyl isobutyrate 97-62-1  A  No   

p-Tolyl acetate 140-39-6  A  No   

ethyl 2-

methylbutyrate 
7452-79-1  A  No   

3-methyl-3-pentanol 77-74-7  A  No   

ethyl benzoate 93-89-0  A  No   

methyl isobutyrate 547-63-7  A  No   

2,3-dimethoxytoluene 4463-33-6  A  No   

3-methyl-2-butanol  598-75-4  A  No   

D-limonene 5989-27-5 N N  Yes No No 

gamma-nonanoic 

lactone 
104-61-0 N N  Yes No No 

(-)-menthone 14073-97-3 N N  Yes No No 

butyl propionate 590-01-2 N N  Yes No No 

eucalyptol 470-82-6 N N  Yes No No 

 

  



Chapter I – Reverse chemical ecology targeting ORs applied to pest control 

79 

 

Online Resource 4. Performance of the QSAR models when changing the initial test compound used 

in the sphere-exclusion algorithm to obtain the training and test datasets. Only the first five splits that 

had the same activity distribution as in the split used for the final model were investigated. 

 

 Split # Dataset TP TN FP FN Accuracy Precision Recall FPR MCC AUROC 

S
li

tO
R

2
4
 

1 

LOO 4 29 2 4 0.85 0.67 0.50 0.06 0.49 0.93 

Training 7 31 0 1 0.97 1.00 0.88 0.00 0.92 1.00 

Test 0 10 0 2 0.83 NA 0.00 0.00 NA 0.50 

2 

LOO 3 29 2 5 0.82 0.60 0.38 0.06 0.38 0.80 

Training 7 31 0 1 0.97 1.00 0.88 0.00 0.92 1.00 

Test 1 10 0 1 0.92 1.00 0.50 0.00 0.67 0.95 

3 

LOO 3 29 2 5 0.82 0.60 0.38 0.06 0.38 0.80 

Training 7 31 0 1 0.97 1.00 0.88 0.00 0.92 1.00 

Test 1 10 0 1 0.92 1.00 0.50 0.00 0.67 0.95 

4 

LOO 4 29 2 4 0.85 0.67 0.50 0.06 0.49 0.83 

Training 7 31 0 1 0.97 1.00 0.88 0.00 0.92 1.00 

Test 0 10 0 2 0.83 NA 0.00 0.00 NA 0.85 

5 

LOO 3 29 2 5 0.82 0.60 0.38 0.06 0.38 0.80 

Training 7 31 0 1 0.97 1.00 0.88 0.00 0.92 1.00 

Test 1 10 0 1 0.92 1.00 0.50 0.00 0.67 0.95 

Model 

LOO 4 29 2 4 0.85 0.67 0.50 0.06 0.49 0.83 

Training 7 31 0 1 0.97 1.00 0.88 0.00 0.92 0.99 

Test 1 9 1 1 0.83 0.50 0.50 0.10 0.40 0.80 

S
li

tO
R

2
5
 

1 

LOO 14 38 8 4 0.81 0.64 0.78 0.17 0.57 0.87 

Training 18 46 0 0 1.00 1.00 1.00 0.00 1.00 1.00 

Test 6 8 4 1 0.74 0.60 0.86 0.33 0.51 0.77 

2 

LOO 15 36 10 3 0.80 0.60 0.83 0.22 0.57 0.89 

Training 18 46 0 0 1.00 1.00 1.00 0.00 1.00 1.00 

Test 6 9 3 1 0.79 0.67 0.86 0.25 0.59 0.81 

3 

LOO 15 36 10 3 0.80 0.60 0.83 0.22 0.57 0.89 

Training 18 46 0 0 1.00 1.00 1.00 0.00 1.00 1.00 

Test 6 9 3 1 0.79 0.67 0.86 0.25 0.59 0.81 

4 

LOO 11 39 7 7 0.78 0.61 0.61 0.15 0.46 0.89 

Training 16 41 5 2 0.89 0.76 0.89 0.11 0.75 0.96 

Test 6 6 6 1 0.63 0.50 0.86 0.50 0.36 0.69 

5 

LOO 15 38 8 3 0.83 0.65 0.83 0.17 0.62 0.89 

Training 16 39 7 2 0.86 0.70 0.89 0.15 0.69 0.94 

Test 7 6 6 0 0.68 0.54 1.00 0.50 0.52 0.85 

Model 

LOO 15 34 12 3 0.77 0.56 0.83 0.26 0.52 0.84 

Training 18 46 0 0 1.00 1.00 1.00 0.00 1.00 1.00 

Test 5 10 2 2 0.79 0.71 0.71 0.17 0.55 0.89 
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Online Resource 5. Range of metrics values (min and max) for all splits investigated in Online Resource 

4. 

 

Target Dataset Accuracy Precision Recall FPR MCC AUROC 

SlitOR24 

LOO 0.82–0.85 0.60–0.67 0.38–0.50 0.06 0.38–0.49 0.80–0.93 

Training 0.97 1.00 0.88 0.00 0.92 1.00 

Test 0.83–0.92 NA–1.00 0.00–0.50 0.00–0.10 NA–0.67 0.50–0.95 

SlitOR25 

LOO 0.77–0.83 0.56–0.65 0.61–0.83 0.10–0.26 0.46–0.62 0.84–0.89 

Training 0.86–1.00 0.70–1.00 0.89–1.00 0.00–0.15 0.69–1.00 0.94–1.00 

Test 0.63–0.79 0.50–0.71 0.71–1.00 0.17–0.50 0.36–0.59 0.69–0.89 
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Online Resource 6. Performance of the QSAR models on the new experimental data. 

 

Target TP TN FP FN Accuracy Precision Recall FPR MCC 

SlitOR24 26 6 2 5 0.82 0.93 0.84 0.25 0.53 

SlitOR25 22 6 11 0 0.72 0.67 1.00 0.65 0.49 
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Online Resource 7. List of putative SlitOR24 and 25 residues corresponding to MhOR5 odorant binding 

site according to ClustalO and MAFFT multiple sequence alignments (MSA). The MSA have been 

performed on the EMBL-EBI webserver. 

 

MhOR5 SlitOR24 SlitOR25 

 ClustalO MAFFT ClustalO MAFFT 

V88 V88 V88 V88 V88 

Y91 I91 I91 L91 L91 

F92 H92 H92 Q92 Q92 

S151 T153 T153 T153 T153 

G154 V156 V156 A156 A156 

W158 Y160 Y160 F160 F160 

M209 I195 F197 I195 F197 

I213 Y199 S201 Y199 S201 

Y380 Y322 Y322 F322 F322 

Y383 Y325 Y325 Y325 Y325 
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Sweet taste is universally and innately perceived as pleasant [1, 2]. This mostly makes sense 

from an evolutionary point of view as it rewards the consumption of caloric food and because 

parts of our body, mostly the brain, require sugars as input to function properly [3]. While this 

made sense for early vertebrates, nowadays the reward mechanism for sugar consumption is 

overly stimulated due to the abundance of free sugars in processed foods, up to the point where 

its excessive consumption can foster addictive behaviors greater than or equal to drugs [4–6]. 

Interestingly, sugars and sweeteners both trigger a pleasant sensation through the brain reward 

mechanism, but sweeteners don’t necessarily foster satiety [7]. Additionally, sugar-sweetened 

beverages (the largest source of added sugar intake in the US) have been proven to promote 

excess weight gain, type II diabetes and cardiovascular diseases [8] as well as dental caries [9]. 

The concern for public health has nurtured proposals to regulate added sugars similarly to 

tobacco or alcohol, which are the two other main risk factors in non-communicable diseases, 

mainly through taxes or imposing age limits on their purchase [10]. Low-calorie sweeteners 

thus appear as an ideal alternative that could satisfy both consumers, food-processing industry, 

and public health agencies. However, sugar consumption is only part of the equation as obesity, 

diabetes, and cardiovascular diseases also depend on other external factors such as saturated 

fats consumption and physical activity. Unfortunately, among the plethora of sweeteners 

available, none of them can reproduce the sensory profile of table sugar, sucrose [11]. Indeed, 

some sweeteners, like saccharin, suffer from a bitter aftertaste, some, like stevia, can be 

perceived with both bitter [12] and menthol aftertaste, while others, like aspartame, suffer from 

sweetness lag i.e., the sweetness is delayed [13]. Other factors also play a role in both consumer 

and industry acceptance, like solubility and thermal stability for food and beverage 

preparations, as well as cost, safety, and patentability [14]. For these reasons, the search for the 

ideal sweetener is still open. The strategy often used by the food-processing industry to 

circumvent these limitations is to combine different sugars and sweeteners to mitigate the 

downsides of each individual sweet additive and come closer to the sweetness profile of sucrose 

with less calories [13]. 

One way to design new sweeteners could be to take advantage of the current knowledge on the 

molecular structures responsible for sweet taste perception. Sweet tastants are detected by the 

sweet taste receptor found in type II taste cells [15]. It belongs to the GPCR family and is 

structured as a heterodimer made of two taste receptors type 1 subunits (T1R): T1R2 and T1R3, 

although the T1R3 homodimer can also be functional and responsive to saccharides albeit at 

higher concentrations [16]. Interestingly, T1R2 is pseudogenized in several felines including 

cats, tigers, cheetahs and lions explaining their indifference to sweet taste stimuli [17, 18].  
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Figure 1: Structure of the sweet taste receptor, labelled with ligands (inhibitors in red) and their binding 

site (adapted and updated from [19–22]). VFD: Venus flytrap domain, TMD: transmembrane domain, 

CRD: cysteine-rich domain. 

 

The T1R2 and T1R3 subunits belong to the class C GPCR family which notably comprises 

metabotropic glutamate receptors (mGluRs) and gamma-amino-butyric acid (GABA) type B 

receptors. The class C receptor structures are arranged in 3 distinct domains: a large 

extracellular N-terminal domain called the Venus Flytrap Domain (VFD), the typical 7 helix 

transmembrane domain (TMD) characteristic of GPCRs, and a cysteine-rich domain (CRD) 

that connects those two domains [23]. For the sweet taste receptor, several binding pockets have 

been identified, one in each of these domains (Figure 1) [19, 24]. In the case of the sweet taste 

receptor, the VFD binds natural sugars which tend to be polar, the CRD is a quite rigid structure 

[25] that can bind sweet tasting proteins, and the TMD binds sweeteners and, for T1R3, negative 

allosteric modulators. However, applying structure-based approaches to the sweet taste receptor 

for the discovery of new sweeteners is challenging for two reasons. Firstly, there is no known 

structure of the receptor, except for the VFD of T1R2 and T1R3 of the medaka fish [26], 

although class C structures are available and could help building homology models as was done 

previously [23]. Secondly, multiple binding sites are known and predicting which one to choose 

for each ligand is not necessarily straightforward. 
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Figure 2: Diverse structures extracted from the SweetenersDB, labelled by chemical classes. 

 

To date, more than 300 small-molecule sugars and sweeteners are known, and a description of 

their sweet taste intensity, called relative sweetness, is available [27]. Relative sweetness is 

calculated as the concentration ratio between a solution of sweetener and a solution of sucrose 

perceived with the same intensity. Hence, sucrose has a relative sweetness of 1, and the most 

intense sweetener, lugduname, has a relative sweetness of approximately 225 000. A striking 

chemical diversity can be found among the list of known sugars and sweeteners, with not only 

a large variety of saccharides, but also of polyols, polyphenols, amino-acid derivatives, 

terpenes, and phenylpropanoids, among others (Figure 2). Such disparity can be explained by 

the multitude of binding sites upon which those sweet molecules can bind and opens the 

question of whether or not there are more sweet scaffolds to discover. Considering all the small-

molecule data available, ligand-based methods appear as credible alternatives to search for 

novel sweet compounds. These approaches have been investigated in the past, starting with 

pharmacophore models as early as 1914 [28], later followed by machine-learning models that 

either classify molecules as sweet or non-sweet, or models that predict the relative sweetness 

[27]. 

In this chapter, I focus on the design of an online QSPR platform that can predict the relative 

sweetness of compounds based on their structure in order to identify novel intense natural 

sweeteners. Starting by updating and curating the database of sugars and sweeteners previously 

established by the group (SweetenersDB) [27], I then used state-of-the-art machine-learning 

protocols to train and validate a model based on open-source descriptors (Figure 3). I also 

enforced a thorough evaluation of the applicability domains of the model to quantitatively 

estimate the quality (in terms of applicability, reliability, and certainty) of each prediction. 
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Figure 3: Machine-learning workflow applied for the development of the QSPR model of sweetness 

prediction. 

 

The model was then implemented on a freely accessible webserver (PrediSweet, 

http://chemosimserver.unice.fr/predisweet) and used to screen a dataset of natural compounds. 

Three compounds were prioritized and one was validated by in vitro assays, corresponding to 

a novel sweet scaffold belonging to the lignan family. 

 

Contributions 

Publication 3 

I updated and curated the database of sugars and sweeteners (SweetenersDB), trained and 

validated the machine-learning model for sweetness prediction completed with the definition 

of the applicability domains, set up the webserver and deployed the model there (PrediSweet), 

and screened the dataset of natural compounds to identify putative sweeteners and prioritized 

three compounds. Our collaborators tested these compounds in vitro. 

Oral and poster presentations 

This work was presented as a poster during the 2nd UCA Complex Days meeting (2019) for 

which I received a “best poster award”, and the 26th PACA Chemistry Day (2019). It was also 

presented orally during the 21st GGMM congress (2019), and the 9th meeting of the French 

chemoinformatics society (SFCi, 2019) for which I was awarded the “best oral 

communication”. 

http://chemosimserver.unice.fr/predisweet
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Abstract 

Sugar replacement is still an active issue in the food industry. The use of structure-taste 

relationships remains one of the most rational strategy to expand the chemical space associated 

to sweet taste. A new machine learning model has been setup based on an update of the 

SweetenersDB and on open-source molecular features. It has been implemented on a freely 

accessible webserver. Cellular functional assays show that the sweet taste receptor is activated 

in vitro by a new scaffold of natural compounds identified by the in silico protocol. The newly 

identified sweetener belongs to the lignan chemical family and opens a new chemical space to 

explore. 

Keywords 

Sweet taste, machine learning, natural compounds, sweetener, sweet taste receptor 

Introduction 

Consumer interest in natural high potency sweeteners has grown spectacularly in recent years, 

fueled by concerns about sugar overconsumption and the use of artificial additives in foods. 

There are three main strategies to reduce sugar intake: an abrupt reduction of sugar without 

substitution, the use of flavor materials to modify sweet taste perception and the use of 

alternative sweeteners. Though many low-calorie sweeteners are known, only few of them are 

used by the food industry (Belloir, Neiers, & Briand, 2017). The search of novel intense 

sweeteners, possessing the same chemosensory profile as sucrose, remains open and 

challenging.  

All sweet tasting compounds are detected by a single heterodimeric G protein-coupled receptor 

composed of T1R2 and T1R3 subunits expressed at the surface of taste buds (Li et al., 2002; 

Nelson et al., 2001). However, no experimental 3D-structure of the T1R2/T1R3 sweet taste 

receptor is available and ligand-based approaches such as Structure Activity Relationship 

(SAR), are relevant to establish a link between the structure of a compound and its sweet taste. 

From original studies of Edna W. Deutsch & Corwin Hansch (Deutsch & Hansch, 1966), 

followed a year later by Robert S. Shallenberger & Terry E. Acree (Shallenberger & Acree, 

1967) to recent structure-taste relationship models (Achary, Toropova, & Toropov, 2019; 

Arnoldi, Bassoli, Merlini, & Ragg, 1991; Barker, Hattotuwagama, & Drew, 2002; Bassoli et 

al., 2001; Chéron, Casciuc, Golebiowski, Antonczak, & Fiorucci, 2017; Drew et al., 1998; 
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Rojas, Tripaldi, & Duchowicz, 2016; Spillane & McGlinchey, 1981; Spillane et al., 2000, 1996; 

Spillane, McGlinchey, Muircheartaigh, & Benson, 1983; Spillane & Sheahan, 1989; Tuwani, 

Wadhwa, & Bagler, 2019; Van Der Heijden, Brussel, & Peer, 1979; Vepuri, Tawari, & Degani, 

2007; Walters, 2006; Zheng, Chang, Xu, Xu, & Lin, 2019), the quest to understand the 

molecular features underlying sweet taste perception is still active. 

In this study, we present the first online tool able to predict sweet taste perception based on a 

machine learning protocol. We have updated and curated the previous database of 316 sweet 

compounds (SweetenersDB) and added new applicability domain metrics to assess the 

robustness of the predictions. A novel scaffold of natural sweetener, belonging to the lignan 

chemical family, that have never been annotated as sweet have been identified and 

experimentally validated. 

Materials and Methods 

Data preparation 

Based on our previous work (Chéron et al., 2017), the database of sugars and sweeteners (Figure 

S1), named SweetenersDB, was curated and updated with missing compounds (Ruiz-Aceituno, 

Hernandez-Hernandez, Kolida, Moreno, & Methven, 2018). Each compound was labelled with 

a relative sweetness value, corresponding to a measure of the sweet taste intensity relative to 

sucrose. Relative sweetness is defined as the concentration ratio between a sucrose solution and 

a solution of sweetener perceived with the same intensity. The relative sweetness of each 

compound was transformed in logarithmic scale for easier manipulation, and it will be later 

referred to as logSw. For compounds that were already present in the database, we updated the 

SMILES (Simplified Molecular Input Line Entry System) to isomeric SMILES in order to 

differentiate stereoisomers. When the information on stereocenters was not available, we either 

regrouped the stereoisomers in a single entry with their average logSw value if the logSw 

difference was lower than 0.2, or we discarded both compounds. The resulting dataset consisted 

of 316 compounds in SweetenersDB (Table S1). The machine learning protocol was applied to 

two datasets of interest: 4796 natural compounds (Table S2) extracted from the SuperNatural 

II database and the phyproof catalogue from PhytoLab, already pre-screened by our previous 

model (Chéron et al., 2017). 

Every compound in the datasets were collected as SMILES strings and sanitized with RDKit 

(Landrum et al., 2018). To assess the importance of predicting protonation states, the major 
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microspecies of each compound was also determined with ChemAxon cxcalc tool (ChemAxon, 

2018) at physiological salivary pH (pH=6.5). Structures were then standardized using the 

“standardizer” (EMBL-EBI, 2017) Python package: salts are removed from the structure, and 

a set of around 30 structure-normalization rules are applied to each molecular graph to cover 

most of tautomerization reactions. 0D, 1D and 2D descriptors were computed using Dragon 

v6.0.38 (Talete srl, 2014), RDKit (Landrum et al., 2018), Mordred (Moriwaki, Tian, Kawashita, 

& Takagi, 2018), and ChemoPy (Cao, Xu, Hu, & Liang, 2013). Descriptors from the three latter 

packages were regrouped as “open-source” descriptors. For each of these two descriptors sets, 

the initial number of features was reduced by removing those that could not be calculated for a 

molecule, as well as near-constant features (two or less unique values), features with a standard 

deviation below 0.001, and features with a correlation greater than 0.95. The resulting datasets 

consisted of 635 descriptors for the Dragon dataset, and 506 features for the “open-source” 

dataset. To avoid any model bias due to overfitting, the number of features used by the model 

is a hyperparameter that has been optimized. 

The updated SweetenersDB was split in training and test sets using a Sphere Exclusion 

clustering algorithm. Dragon descriptors were chosen for this procedure: they were normalized 

between 0 and 1, and the clustering was initiated from the compound that is closest to the center 

of the dataset in the descriptor hyperspace. 64 diverse compounds (20.3%) were selected for 

the test set, leaving 252 compounds in the training set (Figure 1, Table S1). The chemical space 

was mapped using a t-distributed Stochastic Neighbor Embedding (t-SNE) analysis. t-SNE was 

performed with the scikit-learn python package (v0.20.2) (Pedregosa et al., 2011) using default 

parameters (perplexity of 30, early exaggeration of 12, learning rate of 200 and 1000 iterations) 

except for the embedding initialization which was done with principal component analysis. 
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Figure 1: Representation of the SweetenersDB chemical space based on a t-SNE dimensionality 

reduction method. Known sweet chemical families in the training and test set are represented by circles 

and triangles, respectively. Light and dark grey data points represent natural compounds that were 

predicted as intensely sweet (logSw ≥ 2) by both our previous and current models (Table S2). Grey 

squares represent natural molecules experimentally tested in the present study. 

 

Machine-learning model for sweetness prediction 

Several regression algorithms from the python package scikit-learn were evaluated: Random 

Forest, Support Vector Machine (SVM), Adaptative Boosting with a Decision Tree base 

estimator (AdaBoost Tree), and k-Nearest Neighbors. Five-fold cross validation was performed 

with hyperparameter tuning using a grid search. The workflow for each cross-validation fold 

was as follow: standardization of descriptors, feature selection, and model training. Selection 

of descriptors was done by keeping a given percentile of the highest ranked descriptors based 



Chapter II – Do computers have a sweet tooth? Machine learning for natural sweeteners 

96 

 

on their Mutual Information with our endpoint. The optimal percentile of features was tuned as 

a parameter of the Grid Search. 

Once optimal hyperparameters were found for each model, final models were trained using the 

full training dataset. Their predictive performance was evaluated based on criteria previously 

defined by Golbraikh and Tropsha (Golbraikh & Tropsha, 2002). For the “Dragon” models, 

only the SVM model did not pass all criteria, and for the “open source” model, only the 

AdaBoost Tree passed all criteria. In both cases, the AdaBoost Tree model was selected as the 

best performing model, using 32 descriptors for the “Dragon” model, and 51 descriptors for the 

“open source” model (Figure S2 and Table S4). A summary of their performances is reported 

in the results section (Table 1) and detailed in supporting information (Table S3).  

In addition to training and validating several models for sweetness prediction, a web server 

implementing the “open-source” model was developed and is freely available at the following 

address: http://chemosimserver.unice.fr/predisweet/ 

Other chemoinformatics solutions are available but none of them has been implemented on a 

webserver. For instance, the e-Sweet platform (Zheng et al., 2019) is based on a consensus 

model of various machine learning protocols. The database used to train and test their model is 

very similar to the database used to setup Predisweet and e-Sweet performs as well as our model 

(R2 on the test set is in the same range [0.75-0.78] for both solutions). Recently a new 

functionality to predict sweetness has been implemented on the BitterSweet webserver (Tuwani 

et al., 2019). The performance of BitterSweet is comparable to e-Sweet and Predisweet (R2 of 

0.72 on our test set) but the protocol is still unpublished, and seven molecules of the test set has 

not been considered as sweet. 

Webserver interface 

The user is asked for one or several molecules which can either be drawn directly on the 

chemical structure editor Ketcher or inputted as a simple text query or file in the SMILES 

format. The workflow (Figure 2) followed by query compounds is the same as used during 

model development. First, a molecule is generated from the SMILES string with RDKit to 

assess its sanity. The structure is then standardized using the “standardizer” Python module. 

The 51 molecular descriptors selected during model development are computed and 

standardized based on the training set transformations. The descriptors are passed to the 

AdaBoost Tree model in order to predict the logSw. Finally, the quality of each prediction is 

assessed based on three metrics, namely the applicability, reliability, and decidability domains 

http://chemosimserver.unice.fr/predisweet/
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(Hanser, Barber, Marchaland, & Werner, 2016). The applicability domain indicates if the 

compound is within the descriptor range of the training set and its score is computed using a 

convex hull approach. The reliability domain highlights the density of information around the 

compound. The reliability score is calculated by counting the number of molecules from the 

training set that are inside a sphere centered on the query. The decidability domain shows the 

confidence in the prediction that was made. The decidability score is based on the weights of 

each decision tree that compose the AdaBoost model. It is computed by summing the weights 

of decision trees that made a prediction close to the model prediction and dividing it by the sum 

of all weights. 

Each molecule is indexed in the database with its InChIKey, which avoids making predictions 

for the same molecule twice. For a seamless user experience, the name of each molecule is 

retrieved by querying PubChem with the pubchempy Python package, and a 2D representation 

of the compound is generated with RDKit. 

 

 

Figure 2: Workflow followed by each molecule submitted to the webserver. 

 

Functional expression of the human sweet taste receptor 

In order to validate the sweetness of the three natural compounds, we employed a cell-based 

expression system for the human T1R2/T1R3 sweet taste receptor as previously described 

(Poirier et al., 2012; Sigoillot et al., 2018). Briefly, the cDNAs coding human T1R2 and T1R3 

subunits were cloned into pcDNA3 and pcDNA4 expression plasmids, respectively. HEK293T 

cells stably expressing G16gust44 and T1R3 were seeded at a density of 0.4 ×106 cells per 
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well into 96-well black walled, clear bottom microtiter plates (Falcon) in high-glucose DMEM 

supplemented with 2 mM GlutaMAX, 10% dialyzed foetal bovine serum, 

penicillin/streptomycin, G418 (400 µg/mL) and zeocin (250 µg/mL) at 37 °C and 6.3% CO2, 

in a humidified atmosphere. Twenty-four hours later, HEK293T-G16gust44-T1R3 cells were 

transiently transfected with pcDNA3-T1R2 (120ng/well) with Lipofectamine 2000. Calcium 

signal of mock-transfected cells (HEK293T Gα16gust44 cells stably expressing T1R3 

transfected with pcDNA3 empty vector) were always measured in parallel and compared. 

Twenty-four hours after transfection, the cells were loaded for 1 hour at 37°C with the calcium 

indicator Fluo4-AM (Molecular Probes) diluted in C1 buffer (130 mM NaCl, 5 mM KCl, 10 

mM Hepes pH 7.4, 2 mM CaCl2) in the presence of pluronic acid (0.025%, w/v) and probenecid 

(2.5 mM). After washing with C1 buffer, cells were stimulated with a range of sweet tasting 

compounds. The fluorescence intensity was measured for 90 seconds (excitation 488 nm, 

emission 510 nm) into an automated fluorimetric FlexStation3 Multi-Mode microplate reader. 

The change in fluorescence upon stimulus application were averaged, mock-substracted and 

baseline-corrected. The EC50 values were calculated using SigmaPlot software by nonlinear 

regression using the function:  

𝑓(𝑥) = 𝑚𝑖𝑛 +
𝑚𝑎𝑥 − 𝑚𝑖𝑛

1 + (
𝑥

𝐸𝐶50
)
−Hillslope

 

Chemicals 

All tested compounds (arctiin, ginsenoside Rd and jujuboside A, Figure 3) were purchased from 

Phytolab GmbH & Co. KG, with the exception of sucralose obtained from Sigma-Aldrich. All 

the compounds were dissolved first in DMSO (100 mM in 100% DMSO), and then diluted with 

the C1 buffer solution; except for sucralose, which was dissolved in the C1 buffer solution 

directly. 
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Figure 3: Structure of the tested compounds 

 

Results and discussion 

New machine-learning model based on open-source features 

The performance of the Open-source and Dragon models has been compared. Both models 

show good predictivity on the test set according to state-of-the-art QSAR rules (Table 1). 

Slightly more than 90% of the test set are predicted with an absolute error lower than a log unit 

(Figure S3). The models are less accurate for high sweetness values since they have been trained 

with less information for highly potent sweeteners. Improving the quality of the machine 

learning model would then requires i) expanding the chemical diversity of sweet compounds 

and ii) a larger database of in vivo and in vitro experiments. A threshold of LogSw larger than 

2 has then been chosen to minimize false positive predictions prior in vitro validation. Since 

similar performance have been obtained for both models, the open-source version has been 

implemented on a webserver, freely accessible at the following address: 

http://chemosimserver.unice.fr/predisweet/. Another model has been set up with descriptors 

http://chemosimserver.unice.fr/predisweet/


Chapter II – Do computers have a sweet tooth? Machine learning for natural sweeteners 

100 

 

calculated at salivary pH to assess the effect of the protonation state on the model performance. 

Even though more than a quarter of the molecules had different descriptor values between the 

default and the salivary pH dataset, there was no significant difference in terms of performance. 

The protonation assessment step thus has been skipped in the final protocol. We emphasize that 

the model has not been trained to predict bitter taste and we envision to include this feature in 

a future work. Additionally, any QSAR model has a field of application that clearly defines the 

boundaries within which the model should be used, usually referred to as the applicability 

domain. We have implemented three different metrics to explicitly inform the user whether the 

model and its prediction can be trusted for a particular query molecule.  

 

Table 1: Performance of the models according to Golbraikh and Tropsha rules. (Golbraikh & Tropsha, 

2002) 

Rules Open-source model Dragon model 

R2 > 0.6 0.74 0.75 

Q2 > 0.5 0.84 0.79 

|R2 – R0
2|/R2 < 0.1 0.02 0.05 

0.85 <= k <= 1.15 0.93 0.90 

|R0
2 – R’

0
2| < 0.3 0.07 0.12 

 

Identification of a new sweet scaffold 

A large database of natural compounds has been virtually screened to identify new putative 

sweeteners. The analysis of the resulting sweet chemical space of ~4800 natural compounds 

shows that it does not fully overlap the chemical space of known sweeteners (Figure 1). It 

suggests that a large part of the natural chemical space remains unexplored. We have finally 

selected three natural compounds that have been tested for their ability to activate the human 

sweet taste receptor T1R2/T1R3 expressed in HEK cells, as previously reported (Poirier et al., 

2012). As a negative control, HEK293T Gα16gust44 cells stably expressing T1R3 were mock-

transfected with the empty expression vector to control for T1R2-independent non-specific 

signals. In addition to a LogSw value higher than 2, the price and the commercial availability 
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were two important criteria in the compound choice. Two of them, Jujuboside A and 

Ginsenisode Rd, belong to the triterpene chemical family. The third one, arctiin, possesses a 

lignan scaffold. As shown in Figure 4b, application of arctiin on T1R2/T1R3-expressing cells 

evoked calcium responses in a dose-dependent manner, while no fluorescence signals were 

observed with mock transfected cells. The half-maximal effective concentrations (EC50) of 

arctiin was 2.5 ± 0.4 mM. As a control, we determined the concentration-response curve for the 

high-intensity sucralose (Figure 4a) leading to an EC50 value of 87 ± 13 µM, in agreement with 

reported values (Assadi-Porter et al., 2010; Masuda et al., 2012; Servant et al., 2010). In 

contrast, jujuboside A and ginsenisode Rd showed detectable activity on the T1R2/T1R3 

receptor, but only at the highest tested concentration (Figure 4c and d) precluding establishment 

of complete dose–response curve and calculation of EC50 values. This concentration used was 

the maximum one that did not induce any side effects on mock transfected cells. 

 

 

Figure 4: Response of the human sweet taste receptor to the three natural compounds identified by the 

machine learning protocol and sucralose used as a control. Dose-response curves of T1R2/T1R3-

expressing cells (red curve) and mock-transfected cells (black curve). All concentrations were measured 

in triplicate and each experiment was repeated at least 2 times.  
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Conclusion 

In this study we have used machine learning to predict novel agonists of the sweet taste receptor. 

An AdaBoost Tree model was setup based on open-source chemical features optimized on a 

curated database of 316 known sweet agents (SweetenersDB) and implemented on a freely 

available webserver. The virtual screening of a large database of natural compounds identified 

thousands of putative sweeteners, of which three were selected for in vitro functional assays of 

the human sweet taste receptor and dose-response analyses. Among them, we identified arctiin 

as a novel agonist of the T1R2/T1R3 sweet taste receptor with an EC50 value of 2.5±0.4mM. It 

belongs to the lignan chemical family, polyphenols found in plants, of which epi-lyoniresinol 

has already been annotated as slightly sweet by sensory analyses (Cretin et al., 2015; Marchal, 

Cretin, Sindt, Waffo-Téguo, & Dubourdieu, 2015). As numerous natural sweeteners, arctiin 

might also possess bitter taste but it would require additional experiments out of the scope of 

the present study to assess its aftertaste. Nevertheless, our results confirm that the lignan 

chemical family opens a new chemical space for the search of new sweet agents and machine 

learning is a fruitful approach in this context. 
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Supporting information 

 

Figure S1: Chemical families present in the database. 
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Table S1: list of molecules in SweetnersDB v2.0 

See https://ars.els-cdn.com/content/image/1-s2.0-S0308814620307263-mmc2.xlsx 

 

Table S2: list of natural compounds used to map the chemical space of sweeteners (Figure 1) 

See https://ars.els-cdn.com/content/image/1-s2.0-S0308814620307263-mmc4.xlsx 
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Figure S2: Performance of the “open-source” AdaBoost Tree model for different number of features 

obtained during cross-validation on the training set (where Performance is the coefficient of 

determination R2).  
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Table S3: Evaluation metrics for the performance of the “open-source” and “Dragon” AdaBoost Tree 

models. 

Model Dataset R R2 |𝑹𝟐  −  𝑹𝟎
𝟐|

𝑹𝟐
 

 

k R0
2 |𝑹𝟐  −  𝑹′𝟎

𝟐|

𝑹𝟐
 

 

k’ R'0
2 RMSE MAE 

Open-

source 

Training 0.997 0.995 0.000 1.001 0.995 0.000 0.997 0.995 0.084 0.050 

LOO 0.914 0.835 0.041 1.003 0.801 0.014 0.934 0.824 0.467 0.344 

Test 0.858 0.737 0.104 0.989 0.660 0.015 0.925 0.725 0.666 0.496 

Dragon 

Training 0.998 0.996 0.000 0.999 0.996 0.000 0.999 0.996 0.072 0.024 

LOO 0.888 0.789 0.058 1.000 0.743 0.020 0.919 0.773 0.529 0.376 

Test 0.867 0.749 0.212 1.022 0.590 0.052 0.900 0.709 0.651 0.498 

LOO: Leave-One-Out, R: correlation coefficient, R2: coefficient of determination, k and k’: slopes of the 

regression lines through the origin for the observed vs. predicted and predicted vs. observed values respectively, 

R0
2 and R’0

2: corresponding coefficients of determination, RMSE: root mean squared error, MAE: mean absolute 

error 
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Table S4: Descriptors used by each model 

Model 
Number of 

descriptors 
Descriptors 

Open-

source 
51 

rdkit_BertzCT rdkit_EState_VSA10 rdkit_HallKierAlpha 

rdkit_MaxAbsEStateIndex rdkit_MaxPartialCharge 

rdkit_MinEStateIndex mordred_ATS0Z mordred_AATS4d 

mordred_AATS0p mordred_AATS1p mordred_AATS5p 

mordred_ATSC2c mordred_ATSC3c mordred_ATSC1dv 

mordred_ATSC2s mordred_AATSC2c mordred_AATSC3c 

mordred_AATSC1dv mordred_AATSC2dv 

mordred_AATSC2s mordred_AATSC3s mordred_AATSC1Z 

mordred_AATSC0v mordred_AATSC0p mordred_AATSC0i 

mordred_AATSC2i mordred_MATS1c mordred_MATS1s 

mordred_GATS1dv mordred_GATS1s mordred_GATS1se 

mordred_GATS1p mordred_GATS2p mordred_GATS2i 

mordred_BCUTc-1h mordred_AXp-1d mordred_AXp-2d 

mordred_AETA_alpha mordred_ETA_dAlpha_B 

mordred_ETA_dEpsilon_D mordred_ETA_psi_1 

mordred_AMID_O mordred_RotRatio chemopy_GATSp2 

chemopy_IC1 chemopy_MATSm2 chemopy_MATSm5 

chemopy_MATSp2 chemopy_bcute1 chemopy_bcute2 

chemopy_bcutm2 

Dragon 32 

Mp C% MAXDP piPC05 piPC08 piPC10 piID X1A X4A 

ChiA_Dt AVS_B(m) SpMaxA_B(m) AVS_B(v) SpPosA_B(v) 

SpDiam_B(v) MATS1m MATS2e MATS3e GATS1e GATS2p 

GATS2i GATS1s GATS2s SpMax2_Bh(m) SpMax2_Bh(v) 

P_VSA_v_3 P_VSA_e_2 P_VSA_i_2 Eta_alpha_A 

SM12_AEA(ri) CATS2D_03_AL PDI 
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Figure S3: Predicted and observed logSw values on the test set (predictions from the “open-source” 

AdaBoost Tree model).  
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Table S5: Experimental EC50 of sweet taste receptor ligands and predicted sweetness values using 

various machine learning models. 

Molecule 
Measured 

EC50 

Predicted logSw 

PrediSweetb e-Sweetc BitterSweetd 

Sucralose 

(control) 
87 ± 13 µM 2.78 2.69 2.28 

Arctiin 2.5 ± 0.4 mM 2.78 1.81 bitter 

Ginsenoside Rd > 1.9 mMa 2.51 2.34 2.30 

Jujuboside A > 2.7 mMa 2.57 2.30 
neither sweet nor 

bitter 

a: maximum concentration (showing detectable activity) that did not induce any side effects on mock transfected 

cells. b: using the “open-source” model described in the present study. c: using the e-Sweet software (Zheng et al., 

2019) and consensus model CM01. d: using the BitterSweet webserver (Tuwani et al., 2019). The results from the 

BitterSweet webserver must be considered with care. Tuwani et al., 2019 refers to the “bitter vs sweet” 

classification model and not to the sweetness regression model. The latter has not been published to date. 
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Taste perception allows humans, and in general most vertebrates, to appraise the nutritive value 

of food through five basic taste modalities: salty, sour, sweet, umami, and bitter. From an 

evolutionary point of view, bitter taste is believed to have had a role in protecting living beings 

from ingesting toxic compounds present in food items by triggering an aversive behavior [1]. 

In fact, more than 60% of bitter compounds reported in the BitterDB [2], a database of bitter 

molecules, are toxic [3]. However, the story is not as simple as “toxic compounds are bitter”. 

Bitter taste sensitivity depends on the occurrence of bitter and toxic compounds in an animal’s 

diet. For instance, carnivores can afford lower bitter taste sensitivity thresholds than herbivores 

since comparatively, they are not often in contact with potentially toxic compounds which 

mostly come from plants, but a more sensitive bitter taste would be too restrictive on an 

herbivore’s diet and would become a handicap [1, 4]. In contrast with the idea of bitter taste as 

a warning system, a cross-cultural tendency to seek bitter medicine when signs of illness appear 

is observed, as bitter substances can also suggest pharmacological activity since many drugs 

are bitter [5]. This is even the case for animals since chimpanzees [6], mice [7] and ruminants 

[8] will actively search for bitter-tasting plants or solutions when infected by a parasite, and 

more surprisingly, when they are healthy. Bitter taste could then be not exclusively a marker of 

toxicity but of pharmacological activity i.e., in a beneficial or harmful way, and help to control 

the intake amount. 

The receptors responsible for bitter taste perception, the taste receptors type 2 (TAS2Rs), are 

expressed in type II cells present in taste buds. These receptors belong to the GPCR family [9, 

10], just as taste receptors type 1 (T1Rs) which are responsible for sweet and umami taste 

perception. Type II cells can also express T1R receptors, but most type II cells will only express 

one class of taste GPCR, either T1R or TAS2R [11]. While it has been shown that TAS2Rs can 

oligomerize as both homo or heterodimers, no functional consequence was found, neither as 

agonists that would bind specifically to the heteromer, nor by having a different localization on 

the plasma membrane, nor by displaying varied pharmacological properties [12]. TAS2Rs also 

appear to be glycoproteins as glycosylation of an asparagine of the second extracellular loop 

(ECL2), which is conserved in the entire mammalian repertoire, is important for protein 

maturation and membrane insertion but not for their function as it can be rescued by other means 

[13]. Despite the existence of several TAS2Rs and a subsequent combinatorial code, this is not 

sufficient to be able to discriminate the bitter stimuli generated by different ligands [14]. Indeed, 

while type II taste cells can coexpress different combinations of TAS2Rs [9], and different 

ligands may activate different subsets of taste cells [15], the differentiated signals converge 

downstream in the gustatory pathway [16, 17], leading to a single bitter sensation. The human 
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genome contains 25 functional genes coding for TAS2Rs and 11 pseudogenes [18], while there 

are 33 functional and 3 pseudo genes in the mouse genome [19]. In general, birds have a smaller 

functional TAS2R repertoire (none in penguin, 1 in pigeon, 3 in chicken) [20, 21] likely because 

of their diet, as explained previously. However, a lower number of TAS2Rs isn’t necessarily 

associated with a smaller receptive range for bitter taste, as it may be compensated by a broader 

tuning width of TAS2Rs to detect more ligands [22]. In humans, there are 4 broadly tuned, 6 

narrowly tuned, 3 specific, and 4 orphaned TAS2Rs, while the remaining 8 have an intermediate 

receptive range [23–27]. Among this last category, we have shown that TAS2R7 can detect 

metal ions [28] (see Appendix) in addition to organic compounds. While TAS2Rs are 

undoubtedly GPCRs, their sub-classification is more complicated. Historically, they were first 

thought to be distantly related to pheromone receptors expressed in the vomeronasal organ [9, 

10], then classified with class F GPCRs due to three similar motifs in their consensus sequence 

[29], but more recent work tags them as related to class A GPCRs [30, 31], or even as their own 

class T family in the GPCR database (GPCRdb) [32]. 

Like all GPCRs, TAS2Rs are metabotropic receptors that rely on secondary messengers to 

convert the chemical signal (binding of a bitter tastant) to an action potential that will be carried 

to the nervous system (Figure 1).  

 

Figure 1: Signal transduction for bitter taste. PIP2: phosphatidylinositol 4,5-bisphosphate, PLCβ2: 

phospholipase C beta 2, DAG: diacylglycerol, IP3: inositol trisphosphate, ER: endoplasmic reticulum, 

IP3R3: inositol triphosphate receptor, TRPM4/5: transient receptor potential melastatin, depol.: 

depolarization, SCN2A/3A/9A: voltage-gated sodium channels, act. pot.: action potential, ATP: 

adenosine 5’-triphosphate, CALHM1/3: calcium homeostasis modulators. 
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Briefly, upon ligand binding on a TAS2R, an heterotrimeric G protein dissociates into a Gα-

gustducin subunit and a Gβγ complex (Gβ3 and Gγ13) which then activates a cascade of 

reactions involving a phospholipase C (PLCβ2) and an inositol triphosphate receptor (IP3R3) 

to liberate calcium ions in the cytoplasm [33]. The increase in Ca2+ level activates members of 

the transient receptor potential melastatin (TRPM) family which in turn triggers the 

depolarization of the cell followed by the generation of action potentials by voltage-gated 

sodium channels (SCN) [34]. This culminates with the release of ATP in the extracellular 

medium by calcium homeostasis modulators (CALHM), where ATP acts as a neurotransmitter 

for sensory nerve fibers through the purinergic signaling pathway [35]. 

While the signal transduction has been extensively described, very little is known about 

structure-function relationships in these receptors because of the absence of experimental 

structures. The molecular switches involved in ligand-sensing and G protein signaling mostly 

remain speculative, yet a deeper understanding could provide guidance for the rational design 

of pharmacologically active compounds, either as selective agonists targeting ectopically 

expressed TAS2Rs or as antagonists acting as bitter-taste blockers, using structure-based drug-

design approaches. However, the problematic lack of tridimensional structure of TAS2Rs could 

be addressed using different modeling approaches. The method of choice used in most cases of 

structure prediction is homology modeling. It allows building a 3D model of a target protein by 

using another related protein for which a structure is available, called a template, based on a 

sequence alignment (Figure 2, see Appendix for details). In the case of TAS2Rs, all previous 

homology modeling attempts used class A GPCRs as templates [36] with a sequence identity 

below 15% for the transmembrane domains and ranging from 13% to 29% considering all class 

A GPCRs without structures [31].  

 

Figure 2: Homology modeling workflow. Single-point mutagenesis data can be used to iteratively 

improve the produced models by ensuring positions that are involved in binding in a ligand-dependent 

manner are oriented towards the cavity of the binding pocket. 
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The main difference between the currently published TAS2R models lies in divergent multiple 

sequence alignments between targets and templates, highlighting that this process is not 

straightforward. Alternatively, ab initio methods such as GPCR-I-TASSER [37] can readily 

generate 3D models from the amino-acid sequence of any GPCR by reconstructing 

transmembrane segments (TMs) individually using replica-exchange Monte Carlo (REMC) 

simulations. The TMs are then assembled in a second set of REMC simulations using a reduced 

representation of the TM segments (Cα atoms and sidechain center of mass only) to more 

efficiently sample the conformational space [38]. However, this ab initio framework is only 

used if homology modeling is not possible because of the absence of a suitable template. More 

recently, deep-learning-based methods have emerged at the forefront of protein folding. 

DeepMind, a Google subsidiary, won the 13th CASP, a blind structure prediction challenge, 

using their AlphaFold model [39] which relies on coevolution to predict distance distributions 

between all pairs of Cβ atoms in a protein to derive a potential that is minimized by gradient 

descent to generate a 3D structure [40]. For the following 14th CASP challenge, their AlphaFold 

2 model reached a scientific breakthrough with results comparable in some cases to 

experimental methods using a completely different implementation [41]. While the results are 

likely less promising for transmembrane proteins since they are underrepresented in the PDB, 

the technological leap provided by DeepMind will hopefully inspire further progress to 

complement and improve template-based modeling. 

In this chapter, our focus was on providing an integrative protocol that combines homology 

modeling with single-point mutagenesis data to deliver 3D models that describe the binding 

pocket of TAS2Rs as accurately as possible. As a follow-up of our modeling efforts of TAS2R7 

[28] (see Appendix), our sequence alignment was adjusted by including the entire mammalian 

TAS2R repertoire to  more precisely identify conserved positions, as well as olfactory receptors 

(which are a subcategory of class A GPCRs) to guide the alignment of ambiguous sequence 

segments. We then extrapolated the molecular switches of class A GPCRs to this family of taste 

receptors and validated them with in vitro functional assays. This work paves the way for future 

analysis on the molecular recognition and signal transduction of bitter taste receptors. 

 

Contributions 

Appendix publication A1 

My role was to predict how the human TAS2R7 interacts with metal ions using a 3D structure 

of the receptor that I generated by comparative modeling. Site-directed mutagenesis was 
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performed by our collaborators on four charged or polar residues close to a region with a 

negatively charged electrostatic potential. Two residues that are critical for the recognition of 

metal ions by TAS2R7 were identified this way. 

Publication 4 

Jérémie Topin setup, updated, and curated the database of single-point mutagenesis data, 

analyzed the results, and supervised the study. I updated and curated the database, built the 3D 

models of TAS2Rs, designed a custom scoring function to select ideal 3D models, and analyzed 

the results. Jody Pacalon analyzed the volume and hydrophobicity of TAS2Rs binding pocket. 

Our collaborators performed in vitro assays and analyzed the results. Jérémie Topin and I 

contributed equally as first authors. 

Poster presentations 

I presented this work during poster sessions at the European Chemoreception Research 

Organization (ECRO, 2019) and Groupement de Recherche Odorant Odeur Olfaction (GDR-

O3, 2019) annual meetings, and the International Symposium on Olfaction and Taste (ISOT, 

2020) and Weurman symposium (2021). 
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Abstract 

Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled 

receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and 

key-residues controlling their function remain mostly unknown. We designed an integrative 

approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A 

GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved 

motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate 

homology models of human TAS2Rs. As a test case, we examined the accuracy of the 

TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This 

combination of in silico and in vitro results clarify sequence-function relationships and identify 

the functional molecular switches that encode agonist sensing and downstream signaling 

mechanisms within mammalian TAS2Rs sequences.  
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Introduction 

Bitterness is one of the basic taste modalities detected by the gustatory system. It is generally 

considered to be a warning against the intake of noxious compounds [1] and, as such, is often 

associated with disgust and food avoidance [2]. At the molecular level, this perception is 

initiated by the activation of bitter taste receptors. In humans, 25 genes functionally express 

these so-called type 2 taste receptors (TAS2Rs), which provide the capacity to detect a wide 

array of bitter chemicals [3]. Further, TAS2Rs are also ectopically expressed in non-

chemosensory tissues, making them important emerging pharmacological targets [4-6]. 

TAS2Rs are G protein-coupled receptors [7] (GPCRs) classified as distantly related to class A 

GPCRs. They were previously classified with class F GPCRs [8] and more recently as a separate 

sixth class evolved from class A [9, 10]. The sequence similarity between TAS2Rs and class A 

GPCRs is in the range of 14%-29% [11]. Structure-based sequence alignment has placed 

TAS2Rs in the class A family, which contains the olfactory chemosensory receptors sub-family 

[12]. TAS2Rs have been recently labelled as class T in the GPCR database (GPCRdb) (Fig. 1a) 

[13]. 

Structurally, GPCRs are made up of seven transmembrane (TM) helices named TM1 to TM7 

that form a bundle across the cell membrane. How GPCRs achieve specific robust signaling 

and how these functions are encoded in their sequences are pending fundamental questions. 

GPCR activation relies on so-called molecular switches, which allosterically connect the ligand 

binding pocket to the intracellular G protein coupling site in order to trigger downstream 

signaling [14]. In class A GPCRs (including olfactory receptors, ORs), these molecular 

switches consist of conserved sequence motifs (Fig. 1c). The “toggle/transmission switch” 

CWxPTM6 (or FYGxTM6 in ORs) senses agonist binding. The other motifs, which propagate the 

signal, include the “hydrophobic connector” PIFTM3-5-6, the NPxxYTM7, the “ionic lock” 

DRYTM3, and a hydrophobic barrier between the last two [15-18]. 

To date, experimental structures have not been determined for any TAS2Rs, but the following 

hallmark motifs have been defined based on sequence conservation: NGFITM1, LAxSRTM2, 

KIANFSTM3, LLGTM4, PFTM5, HxKALKTTM6, YFLTM6, and PxxHSFILTM7  [7]. These 

conserved motifs are highly dissimilar between TAS2Rs and class A GPCRs (Fig. 1b,d and 

Table 1), leading to different sequence alignments. The main discrepancies occur in TM3, TM4, 

TM6, and TM7 [11, 19-30], making it difficult to infer TAS2R functional molecular switches.  
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Fig. 1 a Schematic phylogenetic tree of GPCR classes according to Cvicek et al. [12]. b Snake plot 

representation of transmembrane segments (TM) of mammalian TAS2Rs consensus sequences, colored 

in grey scale according to sequence conservation. c Non-olfactory class A GPCR sequence hallmarks 

(transmission switch in blue, hydrophobic connector in green, ionic lock in sea green, hydrophobic 

barrier in light blue). d Snake plot representation of non-olfactory class A GPCR consensus sequences. 

 

Table 1 Key residues and consensus motifs. Superscripts refer to the Ballesteros–Weinstein numbering 

scheme. 

TM class A GPCR OR TAS2R 

1 GN1.50xLV GN1.50LLI N1.50GFI 

2 LAxAD2.50 LSFxD2.50 LAxSR2.50 

3 
L3.43 L3.43 L3.43 

DR3.50Y MAYDR3.50YVAIC K3.50IANFS 

4 W4.50 W4.50 L4.50LG 

5 
P5.50 P5.50F P5.50F 

Y5.58 Y5.58 F5.58 

6 
K6.32xxK RxK6.32AFSTC HxK6.32ALKT 

CW6.48LP FY6.48G YF6.48L 

7 SxxNP7.50xxY PxxNP7.50xIY PxxHS7.50FIL 
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These discrepancies remain a central issue in understanding the complex allosteric TAS2R 

machinery. The present study aims to identify the molecular switches that control TAS2R 

functions. We present an integrative protocol that advances comparative modeling of TAS2Rs. 

Case studies of site-directed mutagenesis followed by in vitro functional assays on human 

TAS2R16 then evaluated the roles of the predicted molecular switches in TAS2Rs. 

Methods 

Sequence alignment  

Automatic multiple sequence alignment (MSA) of TAS2Rs was performed with class A and 

class F templates (labelled ClustalO and classF, respectively) using ClustalO [31] with default 

settings in the Jalview interface (v2.11.0) [32]. These MSAs were not modified. Another MSA, 

labelled Chemosim, was completed using class A templates, 339 class II ORs and TAS2Rs. The 

Chemosim alignment was then manually refined using constraints from functional assays in the 

literature (as described in the results section). We specifically focused on the 339 class II ORs 

because they contain relevant motifs for TAS2Rs alignment and because TM sequence 

conservation is higher than in a mixture of class I and class II human ORs. TM segments were 

predicted by the PPM webserver [33]. The final Chemosim MSA is provided as a supplementary 

information file (TAS2R-OR-templates.pir). 

Template selection for comparative modeling of bitter taste receptors 

Class A GPCR templates were selected by submitting each of the 25 human TAS2Rs 

UniprotKB accession numbers to the Swiss-Model modeling server [34]. From the proposed 

templates for human TAS2Rs, 46 with at least 10% sequence identity were kept. Templates 

were then grouped by protein name and sorted by resolution and average sequence identity with 

TAS2Rs. The highest resolution template from each group was retained, resulting in 19 

templates. Finally, six GPCR class A templates were selected to maximize structural diversity. 

As TAS2Rs have been suggested to be part of the same family as the frizzled receptors [35], 3 

class F GPCR templates were also considered: the human FZD4 receptor [36] and 2 structures 

of the human SMO receptor [37]. The PDB code for the six class A templates were as follows: 

rhodopsin (6FUF) [38], β1-adrenergic (4BVN) [39], β2-adrenergic receptor (5JQH) [40], 

angiotensin II type 1 (4YAY) [41], chemokine receptor CXCR4 (3ODU) [42], serotonin 

receptor 5-HT2C (6BQG) [43]. 
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Integrative structural modeling of TAS2R 

Using the protocols described above (Chemosim, Gomodo, ClustalO, GPCRdb, BitterDB, and 

classF), we built a large number of 3D models and evaluated and ranked them using a meta-

score defined as the average of the pocket and helicity score (Fig. 2). This score provides a 

unique descriptor that accounts for both GPCR structural requirements and TAS2R 

experimental constraints. 

 

 

Fig. 2 a An integrative approach to identify the TAS2R binding pocket that is used as a constraint in 

comparative modeling with the Chemosim protocol. b A pocket fingerprint was extracted based on the 

positions of binding residues in the 3D model. The light brown surface represents the binding pocket. c 

The helicity of the TM segment was analyzed and d combined with the pocket fingerprint to calculate a 

structure-based normalized meta-score. The meta-scores of the best 3D models of TAS2R14, 16 and 46 

structures generated by the different comparative modeling protocols are shown in panel d. 

  



Chapter III – Structure-function relationships for bitter taste receptors 

128 

 

For each alignment (ClustalO, Chemosim, and classF) and each template, we generated 1000 

homology models using Modeller v9.21 [44] with a maximum of 300 conjugate gradient 

minimization steps and refinement by molecular dynamics with simulated annealing 

(“md_level”=slow). The remaining parameters were set to default from the “automodel” class. 

The BitterDB and GPCRdb webservers provided additional 3D models of each TAS2R.  

The GOMoDo [45] webserver was also used to automatically generate models of TAS2Rs 

based only on the sequence (labelled Gomodo in the analysis). Default options were used, 

excepting the number of models which was set to the maximum (99 models). 

 

Evaluation of the model pocket score: To identify residues oriented toward the binding 

pocket, the following protocol was implemented in Python: i/ For each of the 25 human 

TAS2Rs, a reference 3D model was selected from the Chemosim models. All reference models 

were then structurally aligned to the TAS2R16 reference. ii/ A unique grid of points broadly 

covering the binding site of class A GPCRs was generated and aligned to the coordinates of the 

TAS2R16 reference. iii/ Each TAS2R model was aligned to its reference based on the alpha 

carbons of the TM residues. iv/ Residues whose sidechain center of mass (SCM) was within 

8.0 angstroms of any grid point, and whose angle between the SCM, the alpha carbon, and any 

grid point was lower or equal to 30 degrees, were considered as oriented towards the pocket. 

Only residues annotated as involved in ligand binding were kept (see supplementary file 

TAS2R-msa_annotated.xlsx). v/ The pocket score was calculated as the fraction of residues 

oriented towards the pocket for each TM, averaged across all TMs. 3D structure alignment was 

performed with MDAnalysis v1.0.0 [46], and distance and angle calculations were performed 

with scipy v1.5.0 [47] and numpy v1.19.0 [48]. 

 

Evaluation of TM helicity: The Ramachandran number [49] (𝑅) was used to check the 

structural quality of the TM domains of each model produced. 𝑅, which is based on the ϕ and 

ψ dihedral angles, can be seen as a short numerical form of the Ramachandran plot. First, we 

analyzed the helicity of 358 class A GPCR X-ray structures to set the experimental range and 

found an average value of 0.35. Thus, a residue was considered in an alpha-helix conformation 

if its 𝑅 value fell between 0.32 and 0.38.  

To discard misshapen 3D models having severe kinks in the middle of TM domains, we 

introduced a function based on 𝑅. We defined the function 𝑓(𝑟) =  𝑐𝑜𝑢𝑛𝑡(|𝑟𝑖 − 𝑅𝑟𝑒𝑓| ≤ 𝜎), 

where 𝑟 is a moving subset of six consecutive 𝑅 values that are shifted forward until all 𝑅 values 
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for a given TM helix have been sampled; 𝑅𝑟𝑒𝑓 = 0.35 is the average 𝑅 value based on X-ray 

structures; and 𝜎=0.07 is a parameter that was optimized to exclude misfolded TM proteins 

while keeping X-ray structures. If at any point the result of 𝑓(𝑟) was lower than 4 for any TM 

residue, the model was discarded. A helicity score (�̅�) was then calculated as the fraction of 

TM residues satisfying the condition: �̅� =  𝑐𝑜𝑢𝑛𝑡(0.32 ≤ 𝑅𝑖 ≤ 0.38)/𝑙𝑒𝑛𝑔𝑡ℎ(𝑅). Among all 

considered X-ray structures, the minimum �̅� value obtained was 0.789. This threshold was used 

to filter out irrelevant models.  

 

Assessing meta-score accuracy: The meta-score was defined as the average of the pocket and 

helicity scores. The relevance of the meta-score was assessed by building a homology model 

of the human smoothened receptor (class F) from a β2-adrenoceptor template (class A, with a 

low shared sequence identity [9%] with class F, PDB 5JQH). Using the experimental structure 

of a human smoothened receptor (PDB 4JKV), the RMSD of the best model was then calculated 

from the meta-score or from the scores available in Modeller or the QMEANBrane [50] 

webserver. As shown in Fig. S2, the meta-score outperformed classical metrics when ranking 

GPCR models based on distantly related GPCR templates. 

Cell culture and transfection 

Plasmids encoding TAS2R16 and G16αgust44 were constructed as previously described  [51]. 

G16αgust44 and TAS2R16 were cloned into a CMV promoter-based vector and expressed 

constitutively. Point mutations on the TAS2R16 clone were obtained from a commercial service 

(Macrogen Inc., Seoul, Republic of Korea), which also performed DNA sequencings of the 

mutant genes. The TAS2R16 and G16αgust44 expression plasmids were co-transfected (4:1) into 

HEK293T cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Cellular responses 

were measured 18–24 h after transfection.  Cells were cultured at 37°C in a humidified 

atmosphere of 5% CO2. The culture medium was Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 100 IU/ml 

penicillin G, 100 µg/ml streptomycin, 2 mM L-glutamine, and 1 mM sodium pyruvate 

(Invitrogen).  
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Quantitative measurement of intracellular Ca2+ in bitter taste receptors upon 

stimulation with salicin 

The compound-induced changes in cytosolic Ca2+ concentrations were measured using a 

FlexStation III microplate reader (Molecular Devices, Sunnyvale, CA, USA). Cells transfected 

with TAS2R16 were seeded onto 96-well black-wall CellBind surface plates (Corning, NY, 

USA). After 18–24 h seeding, the cells were washed with assay buffer (130 mM NaCl, 10 mM 

glucose, 5 mM KCl, 2 mM CaCl2, 1.2 mM MgCl2, and 100 mM HEPES; pH 7.4) and incubated 

in the dark, first at 37°C for 30 min, and then at 27°C for 15 min in assay buffer consisting of 

Calcium-4 (FLIPR Calcium 4 Assay Kit, Molecular Devices). After the samples were treated, 

the cell fluorescence intensity (excitation, 486 nm; emission, 525 nm) was measured. The 

results were plotted with ΔF/F0 on the y-axis, where ΔF is the change in Calcium-4 fluorescence 

intensity at each time point, and F0 is the initial fluorescence intensity. The responses from at 

least three wells (n = 3) with the same stimulus were averaged. 

Results and discussion 

Matching conserved motifs between Class A GPCRs and TAS2Rs 

The prediction of TAS2Rs tertiary structure based on sequence similarity remains challenging 

due to discrepancy in the published alignment [11, 19-30].  We have already shown that refining 

the sequence alignment of ORs with non-olfactory class A GPCRs by including site-directed 

mutagenesis produces relevant three-dimensional models of chemosensory receptors. These 

models have been supported by a large amount of experimental data [16, 18, 52, 53]. We thus 

apply a similar integrative strategy to TAS2Rs. To overcome the lack of sequence similarity 

between TAS2Rs and GPCRs with known structures, we inserted 339 human class II OR 

sequences in the alignment. Subsequent manual data curation involved integration of site-

directed mutagenesis data from the literature for 136 amino-acids positions, i.e. 45% of the 

entire TAS2Rs sequence (see ESI TAS2R-msa_annotated.xlsx). Our alignment (Fig. S1) 

highlights the key residues and consensus motifs in all human TAS2Rs, which correspond to 

the functional molecular switches in ORs and non-olfactory class A GPCRs (Fig. 1b,d). They 

are detailed above and summarized in Table 1. 

TM1, 2 and 4 did not contain motifs involved in downstream signaling. In TM1, the       

NGFITM1-TAS2R motif corresponds to GNLLITM1-OR in OR and GNxLVTM1-classA in non-olfactory 

GPCR templates (see Fig. S1). In TM2, R2.50-TAS2R in the LAxSRTM2-TAS2R motif aligns with               
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D2.50-OR/classA, which in class A GPCRs constitutes a sodium ion binding site that stabilizes 

inactive receptor conformations [54]. Position 2.50 in TAS2Rs is positively-charged and 

unlikely to be involved in sodium binding. Rather, it is hypothesized to stabilize the structure 

of TAS2Rs. [21] The sequence alignment of TM4 was not straightforward, as it lacks the 

canonical W4.50-OR/classA. The highly conserved leucine L4.50 of the LLGTM4-TAS2R motif aligns 

with the most conserved W4.50-OR/class A. 

TM3, 5, 6, and 7 contained functional molecular switches which have been identified in class 

A GPCR experimental structures [14].  

In TM3, K3.50 in the KIANFSTM3-TAS2R motif matches R3.50 of the DRYTM3-classA and 

MAYDRYVAICTM3-OR motifs. The DRY motif constitutes the ionic lock in ORs and non-

olfactory class A GPCRs. This also aligns the highly conserved L3.43, with a leucine found at 

position 3.43 in both non olfactory class A GPCRs and OR (Table 1). 

In TM5, the conserved P5.50 of the PFTM5-TAS2R motif corresponds to the PFTM5-OR and PTM5-classA 

motifs/residue involved in the so-called “hydrophobic connector” (P5.50I3.40F6.44 in class A 

GPCRs). Another conserved aromatic residue that is found in 52% of TAS2Rs, F5.58, 

consistently aligns with the conserved Y5.58 known to be important for GPCR activation [18, 

55]. 

In TM6, the HxKALKTTM6-TAS2R motif matches both a comparable motif in non-olfactory class 

A GPCRs and the typical OR motif RxKAFSTTM6-OR. The “toggle/transmission switch” 

(CW6.48LPclassA and FY6.48GOR) aligns with the YF6.48L motif in TAS2Rs. The location of this 

YF6.48L motif at the bottom of the pocket is consistent with site-directed mutagenesis results, 

suggesting a ligand-sensing role, as is the case for class A GPCRs [16, 56].  

The extracellular part of TM7 is well-documented to belong to the ligand binding pocket in 

TAS2Rs and other GPCRs [20, 24, 56]. This is consistent with its high sequence variability (see 

Fig. S1). TM7 intracellular residues show higher conservation, as they are involved in GPCR 

signaling [16, 56].  These conserved motifs, however, show little similarity between TAS2Rs 

and other GPCRs. Here, the comparison with ORs is highly instructive: from the 

P7.46xLNP7.50xIYTM7-OR motif found in ORs, P7.46 is shared with TAS2Rs, and NP7.50xxY is 

found in other class A GPCRs. P7.46 and P7.50 are conserved in 76% and 28% of human TAS2Rs, 

respectively. The PxxHSFILTM7-TAS2R motif is consequently aligned with PxLNPxIYTM7-OR, 

which itself matches the highly conserved xxxNPxxYTM7-classA motif [20]. 
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Predicted tertiary structure of TAS2Rs 

Based on this refined alignment, we tested various protocols and structural templates to build 

accurate 3D homology models of TAS2Rs. Among the TAS2Rs, receptors TAS2R14, 16, and 

46 were selected to evaluate the approach, as previous work on these receptors involving site-

directed mutagenesis provides data to determine the residues within their binding pocket. 

According to our meta-score, the best models of these three receptors were obtained using the 

Chemosim approach and a single template, either the β2-adrenoceptor (PDB 5JQH) or the β1-

adrenoceptor (PDB 4BVN) structure (Fig. 2 & S3). The performance of each protocol is 

compared in Fig. S3 and S4. Gomodo and ClustalO approaches led to comparable models, with 

slight improvement over BitterDB and, in most cases, substantial improvement over GPCRdb. 

The use of class F templates systematically led to models with misfolded helices (Fig. S4). 

These models and analysis were then extrapolated to the full human TAS2Rs repertoire. Even 

if limited experimental data is available, we were able to define a consensus TAS2R cavity 

based on the positions identified simultaneously in TAS2R14, 16 and 46. We also extended the 

definition of a specific TAS2R cavity to residues identified by site-directed mutagenesis. The 

best models for the entire TAS2R family were obtained using GPCR templates in their closed 

conformation (Fig. S6), with the exception of TAS2R38, for which the open-conformation        

5-HT2C receptor (PDB 6BQG) was best. On average, the templates 5JQH, 4BVN all of which 

correspond to adrenergic receptors, performed best. In this study, we found no relationship 

between the performance of the protocols and the percentage sequence identity of the templates 

used to build the models. At 10–15%, the sequence identity between TAS2Rs and class A 

templates is too low to be a discriminating criterion. 

The best Chemosim model obtained for each human TAS2R is provided as a PDB file in the 

supplementary information. Projecting TAS2Rs sequence conservation onto the 3D structure 

showed that the models retain the structural characteristics of the GPCR (Fig. S5). The most 

conserved residues were located in the intracellular region of the receptor that binds the G 

protein, while the greatest variability was found in the extracellular ligand-binding pocket. 

Analysis of the binding cavity (Fig. S7) revealed high diversity within the hTAS2Rs family. 

The pocket volume ranged up to 400 Å3
 and 700 Å3 for hTAS2R13 and hTAS2R39, 

respectively, corresponding to the structural features of a GPCR [57]. Although no obvious 

structure-function relationship was revealed by the analysis of the cavity volume, the 

hydrophobicity partially correlated with the receptor range of response. The binding cavities of 

TAS2Rs with broad ligand spectrums tended to be more hydrophobic than those of narrow-
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spectrum receptors (Fig. S7),  consistent with previous studies showing a correlation between 

hydrophobicity and GPCR promiscuity [58, 59].  

Evaluating the function role of molecular switches 

To evaluate the functional role of the predicted molecular switches, twelve residue positions on 

TAS2R16 were subjected to site-directed mutagenesis followed by in vitro functional assays 

with salicin (Fig. 3 and Table S2). The residues mostly belonged to TM3 and TM6, which, in 

GPCRs, are well-known to be involved in agonist sensing and activation [14]. 

Using our model as a basis, we investigated residues found in the ligand binding pocket (903.35, 

913.36, and 1855.47) and at or around the predicted molecular switches (452.39, 973.41, 2216.29, 

2226.30, 2366.44, and 2396.47). Residues 42ICL1, 43ICL1, and 1003.44 were predicted to be far from 

the molecular switches. All mutants showed a specific, dose-dependent response to salicin 

(Fig. 3), confirming that they are expressed and functional at the cell surface. 

 

 

Fig. 3 a In vitro functional assays of wild-type (WT) TAS2R16 and single-point mutants stimulated by 

salicin. b EC50 fold (compared to WT) expressed as log(EC50(MUT)/EC50(WT)) for the twenty 

TAS2R16 mutants considered in this study. Positive values indicate a reduced response to salicin in the 

mutated receptor compared to the WT. *** p < 0.001, ** p <0.01, and * p < 0.05 versus the WT group 

(one-way ANOVA followed by Dunnett’s test). c Representative structure of TAS2R16 highlighting the 

location of the mutated residues. The TM domains are presented as sticks. The positions of mutated 

residues are colored in orange, and the molecular switches revealed by the sequence alignment are 

indicated on the structure. 
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The L42ICL1A/S, M43ICL1A, and T1003.44A mutations served as negative controls (Table S2) 

and generally did not statistically affect salicin potency (Fig. 3 and Table S3). Only mutation 

of position 43 to a serine induced a weak decrease of salicin-dependent response in TAS2R16 

compared to WT. 

The TASR216 I90A/S3.35, L91A/S3.36, and L185H5.47 mutants showed a reduced response to 

salicin, consistent with their orientation toward the interior of the receptor bundle (Fig. 3 and 

Table S3). Positions 3.35 and 5.47 have been previously reported to directly interact with 

ligands [26, 30, 60]. 

Position 2396.47 is conserved as Y (64%) and F (8%) in human TAS2Rs (Fig. 4a). In mammals, 

an aromatic residue (F, Y or H) is also found in 85% of the sequences. Conservation of an 

aromatic residue also occurs in ORs [16]. The Y239F6.47 mutation decreased the potency of 

salicin by a factor of 11, confirming its importance in receptor activation (Fig. 3). Position 

Y2396.47 corresponded to Y239 and Y241 in TAS2R10 and TAS2R46, respectively. For both 

of these receptors, the tyrosine to phenylalanine mutation is reported to lead to a significant 

reduction in ligand responsiveness [20, 61]. Born et al. also observed a complete loss of 

response to agonists with the Y239A6.47 TAS2R10 construction [61]. Further, we found that the 

introduction of an alanine at this position eliminated any response to salicin (data not shown). 

Altogether, these observations highlight the functional equivalence of the Y6.47FLx motif in 

TAS2Rs with the F6.47YGx in ORs [16] and the C6.47WLP [14] in non-olfactory class A GPCRs 

[9]. This motif is particularly important as it forms part of the cradle of the binding pocket and 

senses the presence of agonists [56]. Adjacent to Y2396.47
, the aromatic residue F2406.48 is 

conserved as aromatic in 72% of human TAS2Rs and in 67% of mammalian TAS2Rs. As the 

toggle-switch residue, its nature and function in agonist sensing is similar in ORs (conserved 

as F6.48) [16] and non-olfactory GPCRs (conserved as W6.48) [14]. F2406.48 has previously been 

reported to affect TAS2R16 agonist response. Sakurai et al. showed that mutation of F2406.48 

to a leucine residue in TAS2R16 drastically alters the function of the receptor, while mutation 

to aromatic residues (Y and W) leads to moderate changes in the EC50 [19]. Further, the 

potencies of various other agonists were affected in the same manner, highlighting the critical 

role this residue plays in signal initiation, as is the case for numerous class A GPCRs [14-16].  

The hydrophobic connector molecular switch involved in class A GPCRs activation [15] was 

conserved as P5.50I3.40F6.44  [14, 15, 17]. Similarly to other TAS2Rs, a P5.50A3.40F6.44 motif (Fig. 

4b) was located at the core of TAS2R16, close to the cradle of the binding pocket. In class A 
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GPCRs, this motif, together with NPxxYTM7, holds a central role in receptor signaling, ligand-

independent constitutive activation, and β-arrestin signaling in the β2-adrenoceptor [17]. It is 

plausible that this motif has similar functions in TAS2Rs [62], as suggested by the modulated 

response to salicin we found in our mutants (Fig. 3). F2366.44, conserved in 75% of mammalian 

TAS2Rs as Y/F (Fig. 4b), is predicted to be part of the hydrophobic connector molecular switch. 

The F236A6.44 TAS2R16 mutant consistently showed a significantly weaker response to salicin, 

while no difference in response was found for the F236Q6.44 mutant. In a previous study, 

Thomas et al. found that a F236Y6.44 mutation prevented agonist-dependent signaling [26]. In 

TAS2R14, an alanine residue occupies position 6.44, and mutation to a leucine leads to a 

decrease in receptor sensitivity to numerous ligands [60].  

Adjacent to position 3.40, S973.41 does not belong to the binding pocket and points toward the 

membrane. In accordance with a previous report showing its importance for TAS2R16 

trafficking [26], the S97A3.41 mutation altered receptor response (gain of function). 

Our model predicted that V452.39 is part of a hydrophobic cluster in the intracellular part of 

TM2 and is conserved as a hydrophobic residue in 72% of TAS2Rs. This hydrophobic area 

occurs near the highly conserved L2297.53 (96% and 93% in humans and mammals, 

respectively) and the HSFILTM7 motifs and likely forms part of the hydrophobic barrier that 

prevents flooding of the intracellular region. Mutating V452.39 into a hydrophilic residue (S) 

strongly altered salicin activation both in this work and in the literature [26]; substitution with 

a bulkier hydrophobic residue (F) was better tolerated.  

In TM6, position 6.29 and adjacent residues have been documented to control G protein 

selectivity in class A GPCRs [63]. A2216.29 and H2226.30 are conserved in 60% and 92% of 

human TAS2Rs, respectively, and in 70% and 94% of mammalian TAS2Rs (Fig. 4c). Position 

2226.30 is an arginine in TAS2R16. Salicin induced reduced responses in the A221L6.29 and 

R222A6.30 mutants, whereas the response of the R222H6.30 mutant was not statistically different 

from the WT. In TASR2R4, the H233A6.30 mutation inhibited the response to quinine [64].  

Altogether, these findings highlight the need for a positive charge at position 6.30 for G protein-

coupling and selectivity.  
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Fig. 4 Sequence logos and molecular details of conserved motifs involved in the activation mechanism 

of class A GPCRs and TAS2Rs, i.e. a the transmission switch (colored in blue), b the hydrophobic 

connector (in green), and c the G protein-coupling region (in red). The binding pocket is depicted as a 

pale blue surface. The structure of the β2-adrenoceptor is taken from PDB code 5JQH. 

 

Conclusions 

This study elucidates key residues and consensus functional motifs of bitter taste receptors 

(TAS2Rs) using a combination of bioinformatics, molecular modeling, and in vitro assays. The 

consensus sequence motifs match well-known ones in class A GPCRs. Further, we performed 

sequence alignment of human TAS2Rs with olfactory and non-olfactory class A GPCRs, 

including residue conservation and experimental data as constraints. Using site-directed 

mutagenesis, we then evaluated the functional roles of these motifs in TAS2R16 as a case study. 
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In addition to the residues lining the binding pocket, we identified the “toggle/transmission 

switch” (the YF6.48L motif in TM6) and the “hydrophobic connector” (P5.50A3.40F6.44) for 

agonist sensing. Other molecular switches were identified in the intracellular regions of TM6 

and TM7 that are suggested to be involved in G protein selectivity or in receptor activation. 

These molecular switches extends to mammalian TAS2Rs (see supplementary files). The 

approach, templates, and 3D model provided in this study serve as a foundation for rational 

design of specific TAS2Rs agonists and antagonists and for decoding sequence-structure-

function relationships in these receptors. 
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Supplementary information 

 

Figure S1. Alignment and results from site directed mutagenesis.  

Selected human type 2 taste receptors (TAS2R), human Olfactory Receptors (OR) and non-OR class A 

G protein-coupled receptors (GPCRs). In the sequence alignment, residues are colored by their roles as 

reported in the literature (see legend). The aligned motifs are highlighted in yellow. Consensus 

sequences for TAS2Rs, ORs and Templates contained 25 human TAS2Rs, 339 human class II ORs, and 

6 class A GPCRs, respectively. Functional molecular switches (transmission switch, hydrophobic 

connector, ionic lock, and hydrophobic barrier) and residues involved in G-protein coupling are 

indicated under the alignment. 
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Figure S2. RMSD of class F models built using a class A template 

The human smoothened receptor (class F) models were built by homology modeling with a class A 

template (β2-adrenoceptor, PDB 5JQH [1]). The sequence alignment was taken from the GPCRdb [2] 

and manually refined with UCSF Chimera’s structure-based sequence alignment tool (v1.14) [3] based 

on the 5JQH template and a structure of the smoothened receptor (PDB 4JKV [4]). The same Modeller 

[5] protocol detailed in the manuscript was used to generate 1000 models of the smoothened receptor. 

The models were structurally aligned to the 4JKV reference based on the trans membrane (TM) domains 

and ranked by their meta-scores. Finally, the RMSDs between the reference and each best model were 

calculated based on the TM domain backbone (TM bb), the TM alpha carbons (TM Ca), the pocket 

residue backbone (Pocket bb), and the pocket residue alpha carbons (Pocket Ca). The pocket residues 

were identified by visual inspection of four class F X-ray structures in complex with a ligand (PDB 

codes 6O3C [6], 4JKV [4], 4QIM [7], and 4N4W [7]). 
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Figure S3.a. Detailed analysis of TAS2R14 binding pocket residues 

Meta-scores of top models for each protocol and template. Best models following the Gomodo 

[8] and ClustalO [9] protocols were selected based on their DOPE score [10]. For BitterDB 

[11], the only available model did not satisfy our structure quality criteria. The x-axis labels 

correspond to the Ballesteros-Weinstein numbering of each residue [12]. The left y-axis 

provides the PDB code of each template except for GPCRdb, where the model was retrieved 

directly from their website. The right y-axis shows the meta-score, pocket score, and helicity 

score for each selected model. 

  



Chapter III – Structure-function relationships for bitter taste receptors 

146 

 

 

Figure S3.b. Detailed analysis of TAS2R16 binding pocket residues 

Meta-scores of top models for each protocol and template. Best models following the Gomodo and 

ClustalO protocols were selected based on their DOPE score. The x-axis labels correspond to the 

Ballesteros-Weinstein numbering of each residue. The left y-axis provides the PDB code of each 

template except for BitterDB and GPCRdb, where the model was retrieved directly from their website. 

The right y-axis shows the meta-score, pocket score, and helicity score for each selected model. 
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Figure S3.c. Detailed analysis of TAS2R46 binding pocket residues 

Meta-scores of top models for each protocol and template. Best models following the Gomodo and 

ClustalO protocols were selected based on their DOPE score. The x-axis labels correspond to the 

Ballesteros-Weinstein numbering of each residue. The left y-axis provides the PDB code of each 

template except for BitterDB and GPCRdb, where the model was retrieved directly from their website. 

The right y-axis shows the meta-score, pocket score, and helicity score for each selected model. 
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Figure S4.a. Analysis of TAS2R14 transmembrane helicity 

Ramachandran number (R) plot of each residue, numbered by their Ballesteros-Weinstein (BW) 

position, for the models produced by the best template for each protocol. Standard deviation is 

represented by the shaded area, and the green zone corresponds to R values typically found in alpha 

helices of crystallographic GPCR structures (0.32 to 0.38). 
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Figure S4.b. Analysis of TAS2R16 transmembrane helicity 

See figure caption S4.a.   
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Figure S4.c. Analysis of TAS2R46 transmembrane helicity 

See figure caption S4.a. 
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Figure S5.a. Structure of the TAS2R14 model with the highest meta-score 

Structure of the best Chemosim model obtained from the present study. The residues defining the binding 

pocket are shown as spheres if their side chains are oriented outward (red) or inward (green) from the 

pocket and follow from the results shown in Fig S3. Positions of the highly conserved residues in the 

human TAS2R family are indicated by a color scale, from 50% or less conservation (white) to 100% 

(blue). 
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Figure S5.b. Structure of the TAS2R16 model with the highest meta score 

See figure caption S5.a.   
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Figure S5.c. Structure of the TAS2R46 model with the highest meta score 

See figure caption S5.a.   



Chapter III – Structure-function relationships for bitter taste receptors 

154 

 

 

Figure S6. Selection of TAS2R models according to various class A templates 

TAS2R models were built following the Chemosim protocol. The best models are shown with black 

boxes and were selected according to the highest meta-score. For all receptors, a consensus TAS2R 

cavity was used for the detection of residues oriented in the binding pocket. This consensus cavity was 

composed of residues 3.29, 3.33, 3.34, 3.38, 5.46, 6.44, 6.47, 6.48, 7.35, 7.39, 7.42, and 7.43 and was 

completed by receptor-specific cavity residues highlighted in the annotated TAS2Rs MSA that is 

provided in the supplementary files (TAS2R-msa-annotated.xlsx). 
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Figure S7. Structural analysis of TAS2R binding pocket 

Box-plot of hydrophobicity and volume of TAS2Rs binding pocket. The box extends from the lower to 

upper quartile values of the data, with a line at the median and outliers plotted in diamonds. The top 250 

models for each TAS2R produced by the Chemosim protocol and selected templates as shown in Figure 

S6 were analyzed by MDpocket [13] and colored according to the receptive range (broad, 

intermediate/specific, narrow, and orphan receptors in green, blue, red, and grey, respectively). A 

positive hydrophobicity score means that the cavity is mainly hydrophobic.  
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Table S1. Summary of the most conserved TAS2R amino acids 

The most conserved TAS2R residues (above 80% sequence identity) and those involved in TAS2R 

hallmarks (in yellow/bold) used for multiple sequence alignment with OR and class A templates.

 

ClassA motif OR motif TAS2R Motif
TAS2R 

Consensus
Conservation

BW 

numbering
TAS2R14 TAS2R16 TAS2R46

G 88% 1.46 G20 I21 G20

N 92% 1.50 N24 S25 N24

G 72% 1.51 S25 S26 G25

F 84% 1.52 F26 L27 F26

I 92% 1.53 I27 I28 I27

ICL1 W 80% W35 W36 W35

D 84% 2.40 D45 D46 D45

I 84% 2.42 I47 I48 I47

L 80% 2.43 L48 L49 L48

L 100% 2.46 L51 L52 L51

A 64% 2.47 A52 G53 A52

S 84% 2.48 S54 S55 S54

R 96% 2.49 R55 R56 R55

L 92% 2.53 L58 L59 L58

W 84% 3.29 W89 W85 W88

N 84% 3.33 N93 N89 N92

W 100% 3.38 W98 W94 W97

L L L L 96% 3.43 L103 L99 L102

F 80% 3.46 F106 F102 F105

Y 92% 3.47 Y107 Y103 Y106

K 92% 3.50 K110 K106 K109

I 88% 3.51 I111 V107 I110

A 76% 3.52 A112 S108 A111

N 64% 3.53 N113 S109 N112

F 84% 3.54 F114 F110 F113

S 64% 3.55 S115 T111 S114

F 88% F119 F115 F118

L 88% L122 L118 L121

K 84% 4.39 K123 R119 K122

L 88% 4.50 L134 L130 L133

L 80% 4.51 L135 L131 L134

G 72% 4.52 V136 G132 G135

N 100% N162 N163 N161

T 96% T164 T165 T163

P 92% 5.50 P190 P188 P187

F 72% 5.51 F191 F189 F188

L 80% 5.55 L195 L193 L192

Y Y F F 52% 5.58 F198 T196 F195

L 100% 5.61 L201 L199 L198

S 100% 5.64 L204 S202 L201

L 96% 5.65 M205 L203 L202

H 96% H208 Q206 H205

G 84% I218 G213 I215

D 84% D221 N216 D218

P 80% A222 P217 P219

H 92% 6.30 H227 R222 H224

K/R 60% 6.32 G229 T224 K226

A 92% 6.33 V230 A225 A227

L 64% 6.34 K231 L226 L228

K/Q 88% 6.35 S232 R227 Q229

T/S 60% 6.36 V233 S228 T230

F 96% 6.40 F237 L232 F234

L 80% 6.43 Y240 V235 L237

Y 64% 6.47 S244 Y239 Y241

F 60% 6.48 L245 F240 F242

L/I/V 76% 6.49 S246 L241 L243

P 76% 7.46 P273 I269 P272

H 96% 7.49 H276 H272 H275

S 68% 7.50 S277 S273 P276

F 60% 7.51 C278 T274 F277

I 76% 7.52 V279 S275 I278

L 96% 7.53 L280 L276 L279

I 92% 7.54 I281 M277 I280

N 80% N284 S280 N283

L 96% L287 L283 L286

GNxLV

LAxAD

YFLFYGCWLP

TM1

TM2

RxKAFSTC

GNLLI

LSxxD

NGFI

LAxSR

ICL2

DRY

HxKALKTKxxK

TM5

TM6

W W

PFP PF

TM3

TM4

TM7

MAYDRYVAIC

LLG

KIANFS

ECL2

ICL3

PxxHSFILNPxxY PxxNPxIY
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Table S2. Mutations tested in vitro to assess the 3D model 

Mutations TAS2R motifs Location/role 

I90A/S3.35, L91A/S3.36, 

L185A5.47 
n.a. inside pocket 

T100A3.44 Negative control outside pocket 

S97A/N3.41 n.a. 
receptor surface/ 

receptor trafficking 

F236A/Q6.44 P5.50A3.40F6.44 

pocket cradle/ 

hydrophobic connector, agonist 

sensing 

Y239F6.47 YF6.48L 
pocket cradle/ 

transmission switch, agonist sensing 

V45S/F2.39 Next to PxxHS7.50FIL 
intracellular part/ 

hydrophobic barrier 

L42A/SICL1, 

M43A/SICL1 
Negative control intracellular part 

A221L6.29, 

R222A/H6.30 
HxK6.32ALKT 

G protein binding site/ 

G protein selectivity 
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Table S3. Salicin-induced in vitro response in wild-type and mutant TAS2R16  

 Mutations 
EC50 

†
 

(mM) 

Maximal Response 

(ΔF/F0) 

WT  0.98 ± 0.01 0.55 

I90 I90A 3.34 ± 0.03*** 0.50 

 I90S 3.20 ± 0.11*** 0.31 

L91 L91A 2.85 ± 0.03*** 0.57 

 L91S 6.05 ± 0.03*** 0.47 

L42 L42A 0.61 ± 0.04 0.37 

 L42S 1.23 ± 0.05 0.33 

M43 M43A 0.53 ± 0.12 0.45 

 M43S 1.77 ± 0.13** 0.40 

V45 V45S 3.30 ± 0.12*** 0.41 

 V45F 2.79 ± 0.12** 0.26 

S97 S97A 0.17 ± 0.04*** 0.50 

 S97N 0.92 ± 0.11 0.31 

T100 T100A 0.50 ± 0.06 0.61 

L185 L185H 3.87 ± 0.05*** 0.27 

A221 A221L 3.78 ± 0.04*** 0.38 

R222 R222A 5.10 ± 0.08*** 0.34 

 R222H 0.69 ± 0.10 0.52 

F236 F236A 10.38 ± 0.11*** 0.39 

 F236Q 0.57 ± 0.08 0.50 

Y239 Y239F 11.30 ± 0.08*** 0.42 

† Values are means ± SEM; Statistical significance is indicated by *** P < 0.001, ** P <0.01, and * < P 

0.05 vs. the WT group (one-way ANOVA followed by Dunnett’s test) 
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Other supplementary information files 

The MSA of human TAS2Rs and a selection of ORs and class A templates (TAS2R-OR-

templates.pir); the MSA of reviewed mammalian TAS2R sequences obtained from Uniprot 

(mammalian-TAS2R.pir); and an annotated MSA of human TAS2Rs (TAS2R-msa-

annotated.xlsx). 
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Discussion 

Data quality 

In the first two chapters, I have demonstrated applications of a ligand-based method, namely 

machine-learning (ML), to tackle chemosensory problems. In the first part, the models were 

trained to classify compounds as agonists or non-agonists of a pest insect olfactory receptors, 

and then used to prioritize volatile molecules that had a behavioral effect on said insect. In the 

second chapter, the ML model was developed to estimate the sweetness of compounds relative 

to sucrose and served to discover a novel scaffold of sweetener. In both cases, the models were 

trained on data obtained experimentally i.e., someone bought each compound before carrying 

out an experiment to measure the chemosensory endpoint. This raises a question on the impact 

of the quality of experimental data on the predictions made by ML models. It is usually well 

accepted that the output of a model reflects the data it was trained on, meaning that a model 

trained on noisy data will produce faulty results, which is perfectly illustrated by the GIGO 

concept: garbage in, garbage out. 

In the present cases, the first subset of errors can come from an inexact description of the 

molecules used in the experiment. Such errors can arise from the identifier of the molecule, 

such as a name that corresponds to more than one molecule, or a name with an incomplete 

stereochemistry, or an incorrect CAS number. Alternatively, inaccuracies can also emerge from 

the structure i.e., when using non-isomeric SMILES although the stereoisomer used in the study 

is well defined, or because of the absence of structural standardization steps that enforce 

ambiguous moieties such as aromatic rings, nitro groups and tautomers to be represented in a 

canonical way, which may impact descriptor calculation. These errors can be time-consuming 

to repair and are typically resolved during the data curation step of the modeling pipeline. The 

second set of errors comes directly from the measurement of the endpoint and mostly includes 

disparities in experimental procedures and measurement errors inherent to fluctuations in the 

readings of the apparatus.  

For example, in the second chapter the model was trained to predict the relative sweetness of 

compounds which is a property that is not measured by an instrument but perceived by humans. 

To obtain this value, a panel is used to evaluate a solution of sweetener and a solution of sucrose 

until both are perceived isointense. Depending on the experimental setup, the reference 
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concentration might be at the detection threshold or at high concentration, and the relative 

sweetness might then be calculated as the concentration ratio or the mass ratio between both 

solutions. The sensory panel might be composed of highly trained individuals, or regular 

panelists, and the distribution of sex and age might differ, and most importantly their taste 

receptors might carry single-nucleotide polymorphisms (SNPs) which will affect how each 

compound is perceived. All these differences in the protocol add noise in the collected data 

which is then passed to the ML algorithm. In our case, the resulting model had a mean absolute 

error of 0.5 on the log10 of relative sweetness in the test case, corresponding to a 3-fold error on 

the relative sweetness. While this may seem considerable at first, to some extent it reflects the 

large error bar that accompanies the experimental data. 

Conversely, in the Spodoptera littoralis dataset, the electroantennography results are directly 

obtained from the olfactory sensory neuron (OSN) of each fly exposed to an odorant, so that 

there is no interpretation of the olfactory signal by the brain. These neurons express the OR of 

interest thus SNPs may not affect ligand binding and signal transduction, although peri-receptor 

events peculiar to each fly might slightly modulate the response. Also, all the measurements 

were performed by researchers from the same lab using the same protocol. Overall, this 

experimental setup is less likely to produce noisy data in comparison with the sugars and 

sweeteners dataset. 

 

Extracting knowledge from machine-learning models 

QSAR models are often described as black boxes that can easily and often successfully predict 

properties, albeit without conveying any meaningful information to explain the decision 

process. This holds true in the cases studied in the first two chapters, as the algorithms used 

either reproduce parts of the training data without learning anything from it (k-Nearest 

Neighbors) or are too complex to extract the process leading to the final decision in 

understandable terms (Support Vector Machine, Random Forest, AdaBoost Trees) as opposed 

to more simple models like a decision tree or a multilinear regressor. However, some recent 

efforts towards the interpretability of machine-learning models have come through [1], such as 

LIME (local interpretable model-agnostic explanations) [2] or SHAP (Shapley additive 

explanations) [3]. These are post-hoc interpretability analysis methods that can be applied to 

any kind of model and features. 
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For example, in LIME, surrogate interpretable models are trained on top of the black box model 

to explain its predictions. To do so, it creates small variations of an instance that is being 

predicted to create a new dataset, labels it with predictions from the black box, and then trains 

an interpretable model on this data. The surrogate model is thus a local approximation of the 

black box model. Unfortunately, LIME and other similar methods do not consider the 

correlation between features when generating the local dataset from the instance being 

predicted, although these correlations are present in molecular descriptors i.e., changing the 

fraction of oxygen atoms should also change the molecular weight and other properties. Since 

this is not the case with such method, the molecules corresponding to those incorrect descriptors 

would also be invalid, which is a limiting factor for the application of such explainable AI 

methods to ligand-based problems. 

Currently, the most straightforward way towards interpretability appears to be the restriction to 

both interpretable descriptors and ML algorithms during the development of the model, which 

often leads to a decrease in performance. Recent advances in deep learning applied to drug 

discovery also came with their share of methodological developments for interpretability, some 

of which were reviewed by Jiménez-Luna et al. [4] among other explainable AI methods. For 

example, Preuer et al. [5] used integrated gradients to extract atom-wise contributions to the 

final decision of their deep feed-forward neural network, and map these contributions on the 

structure. They also proposed a method to extract the general molecular substructures that are 

learned by convolutional neural networks, instead of limiting interpretability to individual 

predictions. Tang et al. [6] designed a message-passing neural network based on self-attention, 

an architecture which allows them to formulate attention weights as individual atom 

contributions for a given prediction. All of these atomic contribution approaches also benefit 

from powerful visualization techniques such as similarity maps [7] that display each atom’s 

weight as a colored contour map directly onto the molecular structure. 

Overall, model interpretability is currently highly dependent on which chemical features and 

ML algorithm were used, and the choice of whether or not explaining the prediction is important 

should thus be considered at the early stages of model development rather than after virtual 

screening. 
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Applicability domain 

 

Figure 1: Concepts covered by different implementations of an applicability domain. 

 

While I have already described the concept of the applicability domain(s) in more details in the 

Publication 3 section, this term is usually reserved to QSAR models. Briefly, an applicability 

domain determines if a model should be used and trusted to predict the activity of a given 

molecule (Figure 1). 

However, structural models, even more so homology models, also have scenarios where it is 

acceptable to use them and some where it is not. For example, the homology models of TAS2Rs 

presented in the last chapter are optimized to recapitulate as best as possible what we know on 

the binding pocket while maintaining the typical GPCR structure with 7 alpha-helical domains. 

By mutating a position in the sequence and studying its effect on the response by testing 

multiple known ligands, it is possible to uncover if the mutated position interacts directly with 

the ligand and thus if the position is part of the binding pocket. If, for the same mutant, some 

wild-type active ligands respond and others do not, then it is reasonable to assume that this 

specific position is in contact with the ligand and that it belongs to the pocket. By following 

this methodology, we tuned our homology models to reflect the information gathered from 

single-point mutagenesis data available in the literature. While no model could satisfy all these 

constraints, our best ones could position from 60 to 85% of the identified residues inside the 

pocket except for TAS2R10 (33%). This makes most of our models suitable for a more thorough 

analysis of the properties of the binding pocket and for structure-based virtual screening 

approaches such as docking.  
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However, the other parts of the receptor, especially loops and the G protein coupling site, might 

not be as accurate as the binding pocket as there is little to no information available for these 

regions, hence the need to clearly define the applicability domain of the model, in our case the 

binding pocket, where the model can be used with confidence. This does not mean, however, 

that the model cannot be used outside of this scope but rather that the information that will be 

extracted from it will be less reliable. For example, once our TAS2R16 model was generated, 

we then used it to hypothesize which residues are involved in signal transduction and tested 

them in vitro with single-point mutagenesis for validation. This clearly fell outside of the 

applicability domain (except for the “toggle switch” residue which senses the ligand), yet the 

experiments validated that these positions are relevant during receptor activation, thus 

expanding the scope of use of the model. 

Conversely, using any sort of numerical model (ligand-based or structural) within its 

applicability domain does not imply that the outcome should be considered as a proof, but rather 

as a hypothesis pending experimental validation. Thanks to the work done by our collaborators 

in Dijon, Versailles, and South Korea, all the hypotheses that I generated computationally were 

to some extent validated experimentally. 

 

Virtual screening of TAS2Rs 

Subsequently to the generation of the homology models of the TAS2R repertoire, we started 

investigating their usefulness in finding agonists for two orphan receptors (TAS2R42 and 

TAS2R60) and a narrowly tuned one (TAS2R20, 3 known ligands) through virtual screening 

(VS). This work was carried out by Maxence Lalis, an intern student who I co-supervised. 

He started by updating the BitterDB with recently published experimentally tested molecules 

(both active and inactive). The next step was to establish a docking protocol benchmarked on 

three receptors with sufficient mutagenesis data to ensure the structural quality of the homology 

models, and different receptive ranges: TAS2R14 (broadly tuned with 171 agonists), TAS2R16 

(β-D-glucopyranoside specialist with 19 agonists) and TAS2R46 (intermediate with 71 

agonists). 

For each receptor, three models were selected through clustering based on the sidechain of 

residues involved in ligand binding according to mutagenesis data, followed by the selection of 

the best model in each cluster according to our metascore defined in Publication 4. Several 

strategies were investigated to optimize the discrimination of active from inactive molecules. 
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As shown by de Graaf et al. [8] and Jaiteh et al. [9], the second extracellular loop (ECL2) of 

class A GPCR homology models can greatly affect ligand enrichment, yet in cases where 

experimental data on the loop is scarce and the accuracy of its modeling is uncertain, it is best 

to remove ECL2 from the models for VS. In our case, both full and loopless models were 

considered during the optimization of the VS protocol. Other optimizations included the size of 

the grid box used by AutoDock Vina [10] and different rescoring strategies were examined such 

as taking the minimum, average or median score of the generated poses, as well as the 

CorrScore [11], Ligand Efficiency (LE), LESA and LEln [12]. From our benchmark study, 

removing the ECL2 from the models, fitting the grid box to accommodate all pocket residues 

involved in ligand binding according to mutagenesis data, and scoring each ligand by their 

consensus best score (taking, for each homology model, the minimum Vina scores among all 

poses and then averaging it) produced the best results, as evaluated by the area under the 

receiver operating characteristics curve (AUROC). 

The next step was to virtually screen a database of commercially available compounds, Sigma 

Aldrich, to identify putative agonists prior to experimental validation. The dataset, comprised 

of 233,097 molecules, was screened with the above protocol applied to both benchmarked 

receptors (TAS2R14, TAS2R16 and TAS2R46) and orphan/narrowly-tuned receptors 

(TAS2R20, TAS2R42, TAS2R60). Several filtering strategies were included to reduce the list 

of prioritized compounds (Figure 2). First, the top 4% of the best scored ligands were kept. 

Second, we used a filter based on the Euclidean distance between the center of mass of known 

agonists and that of the ligand, as the poses of some inactive molecules tended to drift towards 

the corners of the grid box during the benchmark. This way, the first half of ligands with their 

center of mass closest to that of known agonists were kept. Next, a filter based on bitter tastants 

physicochemical properties, namely the molecular weight, atomic logP, number of rings and 

hydrogen bond donors and acceptors, was added. Molecules that fell outside of the ranges 

explored by known bitter molecules from the BitterDB were excluded. Additionally, an 

interaction fingerprint (IFP) between each docking pose and their receptor was calculated and 

compared to a reference fingerprint constructed from the mutagenesis data. Ligands with a 

Tanimoto similarity to the reference below 0.2 were discarded. Finally, to further reduce the 

list of compounds, a last filtering step was performed using the Bemis-Murcko scaffold [13] of 

the remaining hits. Each compound was clustered according to its scaffold, and among clusters 

that contained enough molecules, the one with the best Vina consensus score was selected. 
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Figure 2: TAS2R virtual screening workflow. Numbers on the right side correspond to the number of 

hits remaining after each filtering step for TAS2R14. COM distance: distance between the center of 

mass of known actives and the docking pose. Bitter physchem: Physicochemical properties of known 

bitter molecules. IFP: interaction fingerprint. Scaffold: Murcko scaffold clustering. 

 

The cutoff on the number of compounds was set to 50 for TAS2R14 and TAS2R16, and 30 for 

the others. Interestingly, some of the selected scaffolds match with known agonists for 

TAS2R14, TAS2R46 and TAS2R20. Amidst the molecules that were not selected by the 

clustering procedure, those that were described as tasting bitter in the literature, without being 

assigned to a specific TAS2R, were added to the pool of selected compounds. 

This protocol resulted in the selection of 20 compounds for TAS2R14 (Figure 3), half by 

clustering and the other half from the literature search that labelled them as bitter. Because 6 of 

the compounds were either not available commercially or were not described as soluble in 

DMSO, 14 compounds were sent to our collaborators for in vitro testing. Pending validation of 

these compounds, the hits selected for the other TAS2Rs will be experimentally tested as well. 

As shown in Figure 3, compound N, which corresponds to isorhamnetin, is a known agonist for 

both TAS2R14 and TAS2R39 [14] and will serve as a positive control. For the other 

compounds, the Tanimoto coefficient with their closest known TAS2R agonist is quite low 

(0.34 ± 0.13), suggesting that the VS approach can explore a broad part of the chemical space 

compared to ligand-based methods which tend to be more strictly limited by their applicability 

domain. 
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Figure 3: Potential hits selected for cell-based assays. Structures described as “bitter” in the literature 

are highlighted in pale blue. Tc: Tanimoto coefficient to the closest known TAS2R agonist. 

 

Towards a better understanding of class A GPCRs 

Because molecular interactions are at the root of ligand sensing and receptor activation, 

providing tools to automatize the analysis of interactions made by biological complexes can 

prove useful in the computational toolkit of chemists. One such analysis, called an interaction 

fingerprint (IFP), encodes 3D interactions between a ligand and a protein as a bitvector, where 

each bit represents the presence or absence of a specific type of interaction (hydrogen bond, π-

stacking…etc.) between the ligand and a residue. As a side-project, I have extended the IFP 

concept to work with molecular complexes formed of any combination of ligand, protein, DNA, 

or RNA molecules, extracted from MD trajectories, docking poses, or crystallographic 

structures, by developing a Python library called ProLIF. The library also lets users define their 

own interactions, comes with several tutorials, and integrates seamlessly within the Python 

ecosystem as special attention was given to the interoperability between ProLIF and other 

packages, whether for data analysis or visualization. A publication describing the 

implementation and showcasing some examples of analysis on both ligand-protein and protein-

protein interactions of class A GPCRs is currently under revision and is provided in the 

Appendix. 
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While the tridimensional structure of most chemosensory receptors is unknown, a reasonable 

number of crystallographic structures are available for class A GPCRs, including some which 

are co-crystallized with a ligand in the orthosteric binding pocket. However, despite binding to 

the same site, these ligands can exhibit agonism or antagonism, the reason for which is 

unknown. We hypothesized that a ligand’s differentiation as agonist or antagonist is dictated 

by its interactions with specific residues inside the pocket. Using the GPCRdb [15], we 

collected 205 PDB files of class A GPCRs in complex with a ligand in the orthosteric site. Each 

entry was labelled with their receptor conformational state (active or inactive) and ligand 

activity (agonist, antagonist, or inverse agonist). After renumbering the residues according to 

the protein’s UniProt sequence and protonating the structures with PDB2PQR [16], ProLIF was 

used to extract the IFP of all complexes. Since some ligand-GPCR pairs have been crystallized 

more than once (especially in the opsin family), the corresponding entries were regrouped and 

their IFP were merged. The residue numbering was then converted to the generic structure-

based GPCRdb numbering  for class A GPCRs [15] to be able to compare the different 

structures. This resulted in 148 unique pairs of ligand-GPCR complexes and their consensus 

IFP, which we used to identify putative differences in the modes of interaction between 

agonists, and antagonists, as well as between active and inactive structures. The different types 

of interactions (hydrophobic, H-bond donor…etc.) available for each position were regrouped 

as a single ligand-residue contact and converted to a contingency table for three groups: agonist 

vs antagonist, agonist vs others, and active vs inactive state. Other possible groups were not 

included in the study because not enough data was available. For each group, only positions 

that had at least 10 members in one of the classes were kept. From there, a two-tailed Boschloo 

statistical test [17] with a 95% confidence interval was run on each table, and to minimize type 

I errors due to multiple testing, the p-values were subsequently corrected using the Benjamini-

Hochberg procedure [18] with a 5% false discovery rate. 

As shown in Figure 4, multiple positions seem to govern ligand differentiation in TM2, TM3 

and TM4, and more surprisingly in ECL1. Residue 3.40, which is a conserved hydrophobic 

position, interact significantly more with agonists, and both 2.64 and 3.40 are often involved 

when the receptor is in an active state. The residue in the most conserved position of the first 

extracellular loop, ECL1.50, which is conserved as an aromatic residue, seem to be involved in 

the negative modulation of the receptor as it is more often interacting with antagonists and 

inverse agonists than with agonists, and the inactive conformation of the receptor is more often 

present when this residue takes part in ligand-protein interactions. Another highly crucial 
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position for the distinction between agonist and antagonist or inverse agonist is the residue 2.60 

which is not conserved and can be either hydrophobic or polar.  

However, at position 2.59 the orexin family is responsible for 90% of interactions with 

antagonists, meaning that our preliminary analysis can be biased by imbalanced data and should 

thus be considered with precautions. Additionally, more data would be needed to conclude on 

potential family-specific binding modes as the most populated family, adrenoceptors, only has 

24 unique complexes experimentally resolved (with 10 agonists, 8 antagonists, 6 inverse 

agonists). 

While we used X-ray structures in this study, such IFPs could also be generated from docking 

poses and fed to an ML classifier to specifically search for antagonists or inverse agonists in a 

virtual screening process, as investigated on the β2-adrenergic receptor by Jiménez-Rosés et al. 

[19]. Provided the validation of our TAS2R docking protocol, one could also imagine applying 

the same IFP approach for the design of specific TAS2R antagonists, notably pertaining to their 

ectopic expression as potential drug targets. 

 

 

Figure 4: Class A GPCR positions involved in ligand differentiation. Each percentage represents the 

number of complexes in which the residue is interacting with the ligand, divided by the total number of 

complexes in each class: 50 agonists, 81 antagonists, 98 antagonists & inverse agonists, 35 actives, and 

94 inactives. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Conclusion 

Smell and taste perception originates from the detection of small molecules by chemosensory 

receptors expressed in the nasal or oral cavity. Most of these receptors belong to the GPCR 

family, a well-studied group targeted by more than 30% of modern therapeutic drugs with 

several structures experimentally solved. Yet, the exact tridimensional structure of these G 

protein-coupled chemosensory receptors still eludes us and limits our understanding of their 

structure-function relationships. How do they bind ligands, how do they transmit this 

information to intracellular secondary messengers during signal transduction, and can we 

rationally design active molecules targeted at these receptors, are all open questions. 

The aim of my PhD thesis was to study the molecular structures at the frontline of chemosensory 

perception, namely receptors and their ligands, through a computational lens. Accordingly, two 

objectives were set: the first one to connect machine-learning (ML) algorithms with taste and 

odor properties of small compounds, and the second one to decipher the molecular basis of taste 

perception. 

To reach the first objective, I focused on two different subjects that were both ideal candidates 

for machine-learning but also challenging. In the first chapter, I described a 2-step approach for 

the rational design of natural semiochemicals that can disrupt the destructive behavior of a pest 

insect, Spodoptera littoralis. Those compounds were identified for their ability to interact with 

specific olfactory receptors of the noctuid moth, by screening a focused library of natural 

volatile molecules with ML models. Those models were built on the premise of a previous 

proof-of-concept model that scanned a more diverse chemical space of commercially available 

compounds. The difficulty here was to train accurate models with few and imbalanced data, but 

thanks to a feedback loop between in vivo data and in silico methods, the models’ performance 

at predicting active compounds improved over time. This led to 2 publications: 

❖ Caballero-Vidal, G.; Bouysset, C.; Grunig, H.; Fiorucci, S.; Montagné, N.; Golebiowski, J.; 

Jacquin-Joly, E. Machine Learning Decodes Chemical Features to Identify Novel Agonists of a 

Moth Odorant Receptor. Scientific Reports 2020, 10 (1), 1655–1655. 

https://doi.org/10.1038/s41598-020-58564-9. 

❖ Caballero-Vidal, G.; Bouysset, C.; Gévar J.; Mbouzid H.; Nara C.; Delaroche J.; Golebiowski, 

J.; Montagné, N.; Fiorucci, S.; Jacquin-Joly, E. Reverse chemical ecology in a moth: machine 

learning on odorant receptors identifies new behaviorally active agonists. Under revision. 

https://doi.org/10.1038/s41598-020-58564-9
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In a second chapter, I described the development of an online QSPR platform designed to 

predict the relative sweetness of compounds, and its subsequent use in the search of intense 

natural sweeteners. The more challenging part here was to work with noisy data which 

ultimately impaired the performance of the ML model, as well as the development of a web 

platform from scratch. It resulted in the discovery of a novel sweet-tasting scaffold belonging 

to the lignan family, described in a publication: 

❖ Bouysset, C.; Belloir, C.; Antonczak, S.; Briand, L.; Fiorucci, S. Novel Scaffold of Natural 

Compound Eliciting Sweet Taste Revealed by Machine Learning. Food Chemistry 2020, 324, 

126864–126864. https://doi.org/10.1016/j.foodchem.2020.126864. 

Both chapters concluded in the usefulness of ML to drive the search for chemosensory-active 

molecules, albeit without providing knowledge on the reasons for their activity. It also requires 

known active compounds to start with, which hampers its application to the deorphanization of 

chemosensory receptors, although proteochemometrics i.e., including descriptors from both 

ligands and receptors, could help to bridge that gap. 

For the second objective, a focus was made on bitter taste receptors as their function does not 

require oligomerization, which simplifies the modeling approach compared to sweet and umami 

taste receptors. In the associated chapter, I described our approach for reconstructing 

tridimensional models of TAS2Rs from their sequence. The integrative protocol combined 

homology modeling and single-point mutagenesis data to provide models of each receptor that 

accurately describe their binding pocket. This protocol was first used on TAS2R7 to identify 

which residues are critical for the recognition of metal ions by this specific receptor and was 

then improved before reconstructing the entire human TAS2R repertoire. During the 

comparative modeling with class A GPCRs, we identified analogous motifs to the molecular 

switches that govern ligand sensing and signal transduction and validated them experimentally 

with in vitro functional assays. The most demanding task in the project was the definition of an 

empirical score that can distinguish models that are faithful to the mutagenesis data while 

discarding those that are structurally deformed. The corresponding work was described in 2 

publications: 

❖ Wang, Y.; Soohoo, A. L.; Lei, W.; Christensen, C.; Margolskee, R. F.; Bouysset, C.; 

Golebiowski, J.; Zhao, H.; Fiorucci, S.; Jiang, P. Metal Ions Activate the Human Taste Receptor 

TAS2R7. Chemical Senses 2019, 44, 339–347. https://doi.org/10.1093/chemse/bjz024.  

❖ Topin, J.; Bouysset, C.; Pacalon, J.; Kim, Y.; Rhyu, M.; Fiorucci, S.; Golebiowski, J. Functional 

Molecular Switches of Mammalian G Protein-Coupled Bitter-Taste Receptors. 2020. 

https://doi.org/10.1101/2020.10.23.348706. Under review. 

https://doi.org/10.1016/j.foodchem.2020.126864
https://doi.org/10.1093/chemse/bjz024
https://doi.org/10.1101/2020.10.23.348706
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We subsequently started searching for agonists of one narrowly tuned and two orphan TAS2Rs 

by virtual screening, and while this task is still pending experimental validation, the TAS2R 

models that I generated will hopefully bring insights on bitter tastants recognition and receptor 

activation in the near future. 

Aside from my main research topic, I was involved in two distinct projects, one related to the 

development of software for the analysis of interactions in biomolecular complexes, and 

another on the alteration of chemosensory perception during the Covid-19 pandemic. In the 

former project, I designed a Python library that can automatically detect a variety of interactions 

in complexes involving ligand, protein, DNA or RNA molecules obtained from molecular 

dynamics (MD) trajectories, docking poses, and experimental structures. These interactions are 

encoded as a binary fingerprint which can then be employed in a series of tasks such as machine-

learning or rescoring docking results. While we showcased the usefulness of the library on class 

A GPCRs in the publication below, it could be applied to any receptor, including TAS2Rs: 

❖ Bouysset, C.; Fiorucci, S. ProLIF: a library to encode molecular interactions as fingerprints. 

Under revision. 

I also participated in worldwide efforts to better understand chemosensory loss (anosmia and 

ageusia) often occurring after a SARS-CoV-2 infection. I brought my experience in web 

development to collaboratively design and maintain the website of the Global Consortium for 

Chemosensory Research (GCCR, https://gcchemosensr.org/) where we shared several studies 

related to the loss of smell and taste, in more than thirty languages. The data collected from the 

dissemination of these questionnaires allowed us to publish 2 articles where we concluded that 

Covid-19 impairs not only smell but also taste and chemesthesis, and that smell loss is the best 

predictor of Covid-19 for people with symptoms of a respiratory illness: 

❖ Parma, V.; Ohla, K.; Veldhuizen, M. G.; Niv, M. Y.; Kelly, C. E.; Bakke, A. J.; Cooper, K. W.; 

Bouysset, C.; […]; Hayes, J. E. More Than Smell—COVID-19 Is Associated With Severe 

Impairment of Smell, Taste, and Chemesthesis. Chemical Senses 2020, 45, 609–622. 

https://doi.org/10.1093/chemse/bjaa041.  

❖ Gerkin, R. C.; Ohla, K.; Veldhuizen, M. G.; Joseph, P. V.; Kelly, C. E.; Bakke, A. J.; Steele, K. 

E.; Farruggia, M. C.; Pellegrino, R.; Pepino, M. Y.; Bouysset, C.; […]; Parma, V. Recent Smell 

Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory 

Symptoms. Chemical Senses 2021, 46, 1–12. https://doi.org/10.1093/chemse/bjaa081. 

 

https://gcchemosensr.org/
https://doi.org/10.1093/chemse/bjaa041
https://doi.org/10.1093/chemse/bjaa081
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The work presented in this thesis layouts the foundations for employing computational models 

to either predict properties related to chemical senses i.e., taste and smell, or to unravel the 

molecular mechanisms behind chemosensory receptors’ activation. To further advance our 

knowledge on structure-function relationships, the ideal scenario would be to get insights from 

experimental structures, but since these are not available yet, one could start from MD 

simulations based on the homology models generated here. Furthermore, to expose the 

interaction networks that govern receptor activation, one could use the interaction fingerprint 

library developed here and apply it to such MD trajectories to automatically extract key 

interactions. Finally, future chemosensory ML models will likely benefit from having more 

data, although cleaner data would be more influential, and could be improved by seeking 

interpretability more than performance. 
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Appendix 

Methods 

Quantitative structure-activity relationships (QSAR) 

QSAR tries to establish a link between molecules and an endpoint i.e., their activity or any other 

biological, physical, or chemical property. It relies on the assumption that the molecular 

structure contains features (moieties, electronic properties…etc.) that are related to the property 

of interest to be able to derive a relationship between these features and the endpoint. 

Molecular structures 

The first step for building a QSAR model is to collect and curate a dataset of molecules with 

their activity. In  the simplest cases, a tabular data format is used, where each row corresponds 

to a molecular structure, typically a SMILES string [1], alongside an activity/property value 

and some additional metadata. 

Once the data has been collected, each molecular representation is standardized. This step 

ensures that the input molecules, usually gathered from different sources, are all consistent with 

one another and follow a unified representation. The standardization procedure is typically 

comprised of several steps: stripping salts and solvents, adding or removing hydrogen atoms, 

neutralizing charges, and forcing a canonical representation for aromatic rings or tautomers. 

The order in which those steps are performed is important since each action relies on the output 

of the previous one, and changing the order might change the final output structure. This step 

might also reveal some unreadable structures which must be corrected manually. Open-source 

tools [2] and commercial software solutions (ChemAxon Standardizer) exist to simplify and 

automatize the standardization procedure. 

Once this is done, the next step is to curate the database. This includes detecting duplicates and 

defining how to appropriately handle them. This action is facilitated by the previous step and 

can be performed by simply searching for text duplications in the InChiKey obtained from the 

standardized structure. In the case of a textual endpoint property (e.g., an odor description) 

some additional corrections might be applicable, such as manipulating the string to be all 
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lowercase. The exact workflow applied for curating the database is in most cases specific to the 

problem being solved. 

Molecular features 

Once the dataset has been cleaned, the next step consists in calculating molecular features which 

will accurately and numerically describe each compound. The aim of molecular features is to 

define the chemical space that is relevant for a given problem i.e., to find appropriate 

representations of the molecules with regard to the property being modeled. Two types of 

features can be used (and are sometimes combined): fingerprints and molecular descriptors. 

Molecular fingerprints typically decompose each chemical structure in a set of moieties and 

accounts for the presence (or sometimes the count) of each specific moiety, resulting in a 

bitstring representation of the molecule. Those moieties can be predefined (e.g., the MACCS 

keys fingerprint) or extracted automatically from each structure (e.g., circular topological 

fingerprints like ECFP [3]). The fingerprint is typically folded to fit in a fixed number of bits 

to reduce memory usage and computational cost in the framework of a similarity search, 

although it introduces bit collisions which hampers interpretability and adds noise. In the use 

case of QSAR models, it is best not to use folded fingerprints [4]. 

Another type of features that are often used in QSAR are molecular descriptors. As defined by 

Todeschini and Consonni, “the molecular descriptor is the final result of a logic and 

mathematical procedure which transforms chemical information encoded within a symbolic 

representation of a molecule into a useful number or the result of some standardized 

experiment.” [5]. Descriptors can be constitutional (atom counts, molecular weight…etc.) or 

topological (based on the molecular graph) among others, but they can also depend on the 

conformation of a molecule (orbital energies, radius of gyration…etc.). This last point raises 

the open question on how to generate relevant 3D conformations for each molecule, as the 

biologically active conformation might be very different from the most stable conformation in 

the gas phase. 

Regardless of the kind of molecular features used, it is quite common that some of the features 

are redundant or unhelpful, and keeping them would only hinder model training. Thus, an 

additional curation step can be performed to limit the number of molecular features available 

by discarding the heavily correlated or constant descriptors, as well as excluding the ones that 

could not be calculated for a given compound. 
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Machine learning (ML) 

The final stage of QSAR modeling is to train and validate a machine-learning model. Firstly, 

the dataset of molecular features and their corresponding activity must be split into a training 

set and an external validation set. Several strategies exist to perform this split in a rational way 

such as the sphere-exclusion algorithm, but a random split can also lead to acceptable results 

[6]. 

Because several ML algorithms depend on distance calculations between data points during 

model training, it can help to scale features in the dataset to make sure that the algorithm is not 

biased towards features with highly variable ranges. Two feature scaling techniques are often 

used: standardization and normalization. In standardization, the features in the training data are 

scaled so that they exhibit the same properties as a standard normal distribution (average of 0 

and standard deviation of 1), according to the following equation: 

𝑥′ =  
𝑥 − µ

𝜎
 

where x is the input feature, and µ and σ are the mean and standard deviation calculated on the 

training set for a given feature, respectively. In normalization (or min-max scaling), the features 

are scaled between 0 and 1 as follow: 

𝑥′ =
𝑥 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

where Xmin and Xmax are the minimum and maximum values in the training set for a given 

feature, respectively. There is no rule-of-thumb to determine a priori which scaling procedure 

should be used. Once feature scaling is settled, the same transformations that were used on the 

training set must be applied on the external test set. Additionally, scaling must be performed 

after splitting the dataset in training and test sets, as otherwise it could leak information from 

the training data into the test data, thus skewing the final evaluation of the model. 

Subsequently, another splitting is used to optimize hyperparameters for each trained ML 

algorithm. Since hyperparameter tuning is the step that is most prone to overfitting, several 

splits are usually investigated in parallel to ensure that the chosen parameters are stable across 

different repartitions of the training set compounds. It can be achieved in a few different ways, 

but the most common is k-fold cross-validation (CV). This method randomly subdivides the 

dataset in k subsets of equal size, and each subset is used once as an internal validation set while 

the others are used for training the model. Several derived forms exist, such as leave-one-out 

where k corresponds to the number of compounds in the dataset, or stratified k-fold CV which 
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ensures an equivalent distribution of the endpoint property between each partition. Nested CV, 

which applies the principle of CV to both external and internal splits, is also often used in order 

to limit the potential bias resulting from the initial splitting strategy and measure the ability of 

the best performing model to generalize to unseen samples. 

Inside the internal CV loop, the hyperparameters are usually fine-tuned using a brute-force grid 

search i.e., all possible combinations of the ML algorithm’s parameters are investigated one 

after the other, and the optimal algorithm and parameters are selected according to the 

performance on the internal test set. The final model is then trained on the complete training set 

and its performance on the external test set are exposed. 

This last point about performance raises the question of which metric is used to optimize the 

model. Selecting this metric, named loss function, obviously depends on the type of task 

(regression or classification) but also on the aspects of the model that should be strengthened. 

For example, in a classification task one might want to penalize false positives more than false 

negatives, but in another task, both should be balanced. In the former case, an appropriate loss 

function would be based on the true negative rate (TNR, also called specificity), while in the 

latter case, balanced accuracy (BA) might be more suitable: 

𝑇𝑁𝑅 =  
𝑇𝑁

𝑇𝑁+𝑇𝑃
 𝐵𝐴 =

1

2
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+

𝑇𝑁

𝑇𝑁+𝐹𝑃
) 

Additionally, a variety of metrics exist to properly report different aspects of the final model 

and expose its strengths and possible shortcomings. For regression tasks, Golbraikh and 

Tropsha have proposed a list of criteria to assess the predictive ability of QSAR models [7]. For 

classification, since class imbalance is not rare and can make typical metrics like precision or 

accuracy severely misleading, metrics like the F1 score or the Matthews correlation coefficient 

are usually preferred. 

Finally, the model should be accompanied with a definition of its applicability domain to inform 

end-users about the confidence in a given prediction [8]. Ideally, authors of QSAR models 

should also be concerned about making their modeling protocol FAIR (findable, accessible, 

interoperable, reusable) to maximize the beneficial impact for the science community, and 

Artrith et al. [9] have recently shared a set of practical guidelines for this matter. 
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Homology Modeling 

Homology modeling uses existing experimental structures of proteins to rebuild a 

tridimensional model of a similar yet unresolved protein. 

Template search 

The first step in comparative modeling is to search for suitable templates that exhibit sufficient 

sequence similarity with the target protein. One can use BLAST [10] to perform such query on 

sequences of proteins available on the Protein Data Bank (PDB), which will search for identical 

sequence fragments between the target and putative template, and later use this result to build 

a pairwise alignments between both. Briefly, a pairwise alignment tries to maximize the 

matching between identical or similar residues in both sequences and introduces gaps when the 

substitution score, as obtained from a substitution matrix (such as BLOSUM62 [11]), is not 

favorable. 

Alternatively, in chapter 3 we decided to directly take the templates used by an automatic model 

building webserver, SWISS-MODEL [12], when building models for the human bitter-

proteome. 

The final templates are usually selected based on sequence identity and X-ray resolution but 

depending on the purpose of the model other criteria can also influence the selection, such as 

the presence of a ligand in the binding pocket or the activation state of the protein. 

Multiple sequence alignment (MSA) 

Once template structures have been selected, the next step is to align the complete set of 

sequences (both targets and templates) together. This step is most of the time performed 

automatically using a heuristic method, such as Clustal Omega [13] which we used in chapter 

3, because finding the optimal solution to an MSA can be too computationally demanding for 

more than a few sequences. 

In ClustalO, the algorithm starts by generating a distance matrix for a subset of sequences using 

a modified mBed method [14]. Briefly, mBed identifies a small number of reference sequences 

and computes their distance to the complete set of sequences to create vector embeddings of 

each sequence. These distances are calculated using the k-tuple method [15]. This step is 

followed by clustering using k-means based on these sequence embeddings. Next, within each 

cluster the full distance matrix is approximated from the sequence embeddings with mBed and 
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a dendrogram is calculated with the UPGMA hierarchical clustering method as implemented in 

MUSCLE [16]. The dendrograms are then joined to generate a guide tree based on the 

barycenter of each subcluster. The combination of mBed with clustering is what allows 

ClustalO to be computationally efficient even with a large number of sequences, as the complete 

pairwise distance matrix that is usually required to obtain the guide tree is actually never 

computed. 

The final step implies the computation of the MSA using HHAlign [17], which relies on using 

Hidden Markov Model (HMM) profiles to construct a progressive alignment based on the guide 

tree.  

While such MSA algorithm typically offers a good starting point, the alignment obtained is 

rarely the optimal solution thus manual refinement is often required and can be aided by taking 

advantage of available mutagenesis and structural data. For instance, when applying homology 

modeling to G protein-coupled receptors, once the transmembrane (TM) domains of the target 

receptor has been identified, the MSA should be corrected to minimize the presence of gaps in 

the TMs as it often leads to misshaped α-helices. 

Model generation 

With the target-template alignment done, the models can be generated by comparative 

modeling. In chapter 3, we used the Modeller [18] software which models proteins by satisfying 

spatial restraints, but other methods (rigid-body assembly, segment matching) exist [19]. 

The first step is to derive the restraints from the alignment based on the assumption that the 

distance between aligned residues should be similar in both target and template. From an 

analysis of families of proteins with resolved structures, tables of correlations between a variety 

of spatial characteristics (α-carbon distances, dihedral angles…etc.) were obtained. These 

tables are used to create the homology-derived restraints from the input target-template 

alignment and expressed as probability density functions. Next, these restraints are combined 

with the CHARMM22 force-field terms [20] (which constrains bond lengths, dihedrals and 

non-bonded interactions) to formulate an objective function. The final step is to minimize this 

objective function using a combination of conjugate gradients and simulated-annealing 

molecular dynamics, which allows for an efficient sampling of the conformational space. By 

slightly varying the initial coordinates of the structure, Modeller can produce an ensemble of 

models for the target protein. 
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Model selection 

Once models are built, we can finally prioritize one or more tridimensional structures. The most 

common approach for models built with Modeller is to use the DOPE score [21] which is 

directly available in the software. DOPE is a statistical potential derived from crystallographic 

structures based on inter-atomic distances. However, it was trained exclusively on globular 

proteins, which limits its practical use when working with transmembrane receptors. For this 

reason, we decided to create our own scoring function to select models in chapter 3. 

To ensure that the models have reasonable geometry, several structure validation solutions such 

as MolProbity [22] exist. These methods typically check for Ramachandran outliers, atomic 

clashes and bad rotamers. Visual inspection can also be used to select the final model based on 

target-specific expert knowledge. 

Finally, if several models are needed, one can combine the above-mentioned methods with 

clustering based on residues of interest to prioritize a representative ensemble of structures. 

This could be used to select a subset of models with variable binding-pocket residues’ sidechain 

orientation prior to docking, which can serve as a good compromise (in terms of computing 

time) between rigid docking on a single structure and flexible docking. 
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Other publications 

The following section includes two publications that are relevant to this thesis: 

• Publication A1, in which I participated but not as a first author 

• Publication A2, which is not directly related to the main research topic of this thesis 
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Publication A1 

Metal ions activate the human taste receptor TAS2R7 

Yi Wang†, Amanda L. Zajac†, Weiwei Lei, Carol M. Christensen, Robert F. 
Margolskee, Cédric Bouysset, Jérôme Golebiowski, Huabin Zhao, Sébastien 
Fiorucci, & Peihua Jiang* 

Chemical Senses 2019, 44, 339–347. 

doi.org/10.1093/chemse/bjz024 
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Abstract 

Divalent and trivalent salts exhibit a complex taste profile. They are perceived as being 

astringent/drying, sour, bitter, and metallic. We hypothesized that human bitter taste receptors 

may mediate some taste attributes of these salts. Using a cell-based functional assay, we found 

that TAS2R7 responds to a broad range of divalent and trivalent salts, including zinc, calcium, 

magnesium, copper, manganese, and aluminum, but not to potassium, suggesting TAS2R7 may 

act as a metal cation receptor mediating bitterness of divalent and trivalent salts. Molecular 

modeling and mutagenesis analysis identified 2 residues, H943.37 and E2647.32, in TAS2R7 that 

appear to be responsible for the interaction of TAS2R7 with metallic ions. Taste receptors are 

found in both oral and extraoral tissues. The responsiveness of TAS2R7 to various mineral salts 

suggests it may act as a broad sensor, similar to the calcium-sensing receptor, for biologically 

relevant metal cations in both oral and extraoral tissues. 

Keywords 

TAS2R7, metal ions, bitter taste, metallic taste 

Introduction  

Divalent salts evoke a complex taste profile, described as metallic, bitter, and astringent (Lim 

and Lawless 2005). Despite recent progress in the identification of the taste receptor repertoire 

for sweet and bitter compounds, the molecular mechanisms underlying the complex sensory 

attributes of divalent salts are largely unknown (Bachmanov and Beauchamp 2007). Using 

rodent models, Riera et al. (Riera et al. 2009) showed that sensory attributes of complex-tasting 

divalent salts are mediated at least partially by transient receptor potential cation channel 

subfamily M member 5 (Trpm5) and transient receptor potential vanilloid-1 (Trpv1) channels. 

Direct activation of Trpv1 by divalent ions may explain the astringency sensation of divalent 

ions (Riera et al. 2009). Trpm5 is a shared signaling element for sweet, umami, and bitter taste 

transduction (Perez et al. 2002; Zhang et al. 2003). The involvement of Trpm5 for the taste of 

divalent salts indicates it may be mediated in part by transduction mechanisms similar to that 

for sweet, bitter, and umami tastes. Interestingly, the sweet and umami receptor subunit T1R3 

is reported to be involved in the taste of calcium and magnesium (Tordoff et al. 2008).  

However, calcium- and magnesium-containing salts are primarily perceived as bitter tasting 



Appendix 

190 

 

(Lim and Lawless 2005; Yang and Lawless 2005). Yet how bitterness of these metallic ions is 

detected is unclear.  

Bitter taste is mediated by type 2 taste receptors (TAS2Rs) that are expressed in a subset of 

taste bud cells (Chandrashekar et al. 2000; Matsunami et al. 2000). TAS2Rs are G protein-

coupled receptors (GPCRs) within the rhodopsin family (Chandrashekar et al. 2000; 

Matsunami et al. 2000). Humans possess 25 functional TAS2Rs. However, the numbers of 

TAS2R genes vary greatly among mammalian species, ranging from 0 to 54 in amphibian, 

presumably correlating with the specific ecological niche of a species (Feng et al. 2014; Go et 

al. 2005; Jiang et al. 2012; Jiao et al. 2018; Liman 2006; Shi and Zhang 2006; Wang and Zhao 

2015). Most  human TAS2Rs have been deorphanized, and their receptive ranges are 

heterogeneous (Meyerhof et al. 2010). Some receptors such as TAS2R14 and TAS2R10 are 

broadly tuned, responding to a wide range of structurally diverse bitter compounds, whereas 

some others such as TAS2R38 and TAS2R16 are more specialized, responding to relatively 

few compounds with specific chemical motifs (Bufe et al. 2005; Kim et al. 2003; Meyerhof et 

al. 2010). This combinatorial TAS2R coding scheme may explain why a relatively limited 

number of receptors can detect a broad range of structurally diverse bitter compounds. 

Given the bitter-taste attribute of multiple divalent salts, we hypothesized that divalent salts 

may activate one or more TAS2Rs, therefore producing a bitter sensation, contributing to the 

complex taste attributes of metal ions. To test this hypothesis, we examined which bitter 

receptor(s) are responsive to divalent salts and found that TAS2R7 responded to all divalent 

salts tested. In addition, TAS2R7 responded to trivalent salts such as aluminum sulfate. In 

contrast, potassium chloride, a monovalent salt, does not activate TAS2R7, indicating its 

specificity. Further structural and functional analyses and molecular modeling revealed H94 

and E264 of TAS2R7 as two key residues for the receptor’s interaction with metallic ions. 

Materials and Methods 

Preparation of human TAS2R constructs and site-directed mutants 

The coding sequences of human TAS2Rs were amplified from human genomic DNA, then 

subcloned into pcDNA3.1(+) vector, with the herpes simplex virus glycoprotein D epitope 

(HSV) at the C-terminal and a signal peptide consisting of the first 45 amino acid residues of 

the rat somatostatin receptor 3 at the N-terminal, essentially as described previously (Bufe et 

al. 2002). Point mutations in human TAS2R7 (NCBI Reference Sequence: NP_076408.1) were 
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constructed by site-directed mutagenesis. All the constructs were confirmed by Sanger 

sequencing. 

Chemicals 

All tested compounds were purchased from Sigma-Aldrich, with the exception of diphenidol 

hydrochloride (Reagent World) and L-praziquantel (manufactured by Shaoxing Pharmaceutical 

Co. Ltd.). All the metal ions were dissolved in the assay solution (130 mM NaCl, 5 mM KCl, 

2 mM CaCl2, and 10 mM glucose; pH 7.4) unless specified otherwise, and the bitter compounds 

(diphenidol, quinine and chlorphenamine) were dissolved first in DMSO as stock solution and 

then diluted with the assay solution; the final DMSO concentration was below 0.5%, with the 

exception of cromolyn, which is dissolved in the assay solution directly. For our initial 

screening (Table 1), Hanks’ balanced salt solution (HBSS, ThermoFisher, Cat#: 14025134) 

supplemented with 10 mM HEPES were used as the assay buffer. Because HEPES and other 

buffering agents partially precipitated certain metal ions, the assay solution without buffering 

agents as described above was used for further characterization of TAS2R7. 

Functional assays of human TAS2Rs 

Human embryonic kidney 293 (PEAKrapid, ATCC # CRL-2828) cells were cultured in Opti-

MEM medium with 4% fetal bovine serum. One day before transfection, cells were seeded on 

a 96-well plate at a density of 25,000 per well. Cells were then transiently transfected with a 

TAS2R construct (0.1 µg/well) along with a G protein Gα16-gust44 (0.1 µg/well) construct by 

Lipofectamine 2000 (0.5 µl/well). For controls, only Gα16-gust44 was used (mock 

transfection). Twenty-four hours after transfection, cells were washed with HBSS including 10 

mM HEPES and loaded with Fluo-4 in the dark for 1 hour. After incubation, cells were washed 

two times with HBSS (including 10 mM HEPES), incubated in the dark for another 30 minutes, 

and then washed with assay solution once more before running the assay using a FlexStation 

III reader. Relative fluorescence units (excitation at 494 nm, emission at 516 nm, and auto cutoff 

at 515 nm) were read every 2 seconds for 2 minutes. Calcium mobilization traces were recorded. 

Immunostaining 

Cells were seeded onto poly-lysine coated coverslips in 24-well plates and transfected with a 

wild-type or mutant TAS2R7 receptor construct (0.25 μg/well), along with Gα16-gust44 (0.25 

µg/well) by lipofectamine (2.5 μl/well). 24hr post transfection, cells were fixed with 4% 
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paraformaldehyde in phosphate buffered saline (PBS) for 30 min.  Cells were then washed with 

3 exchanges of PBS, and incubated with blocking buffer (2% donkey serum, 0.3% Triton x-

100, in SuperBlock (PBS) buffer (ThermoFisher, Cat #37515)) for 1 hr at RT. An anti-HSV 

antibody (Millipore, Cat# MAC123, 1:1000) was applied overnight. An Alexa Fluor 488-labled 

Donkey anti-mouse secondary antibody (Abcam, Cat#: ab150105, 1:1000) were used for 

fluorescence visualization.  

Data analysis 

Calcium mobilization traces were raw data obtained from single wells. Changes in fluorescence 

(ΔF) were calculated as the peak fluorescence minus baseline fluorescence (Lei et al. 2015). 

The calcium mobilization was quantified as the percentage of change (ΔF) relative to baseline 

(F). Each data point for bar graphs and dose-dependent responses was averaged from triplicates 

(mean ± SD). Calcium mobilization traces and bar graphs along with dose-dependent plots were 

all generated by GraphPad Prism 7. Analysis of variance with Dunnett’s multiple comparisons 

test were used for statistical analysis. * indicates P < 0.05. 

Molecular modeling of TAS2R7 

The 3D structure of the human TAS2R7 was obtained by comparative modeling using Modeller 

9.19 (Sali and Blundell 1993) based on the crystal structure of the 5-HT2C serotonin receptor, 

PDB identifier 6BQG (Peng et al. 2018) (Fig. S1). The best homology model according to the 

DOPE score has been energy minimized using AMBER (Case et al. 2005) and the AMBER 

ff14SB force field (Maier et al. 2015) parameter prior to structural validation with 

PROCHECK. Electrostatic potential was calculated with the APBS program (Baker et al. 

2001). To obtain accurate electrostatic properties, we used the two-step focusing technique and 

a grid spacing lower than 0.5 Å in each space dimension. The molecular surface was generated 

using a water probe with a radius of 1.4 Å. The dielectric constant of the protein and the solvent 

was fixed to 2 and 80, respectively. The protonation states of titratable residues were predicted 

at pH 6.5 through the H++ server (Gordon et al. 2005). Cromolyn was docked within the 

TAS2R7 binding cavity using Autodock Vina (Trott and Olson 2010). The Zn2+ cation was 

manually docked into the TAS2R7 model. The cation-receptor complex was energy minimized 

with the AMBER software using 500 steps of the steepest descent optimization followed by 

1,000 steps of conjugate gradient optimization with positional restraints of 50 kcal∙mol-1∙Å-2 on 

backbone heavy atoms.  
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Results 

Identification of TAS2Rs for metal ions 

To determine whether a TAS2R responds to metal ions, we expressed all 25 human bitter 

receptors individually in HEK293 cells (PEAKrapid) by transient transfection of a TAS2R 

along with a coupling chimeric G protein, Gα16-gust44. All TAS2Rs were cloned from human 

genomic DNA. Activation of human TAS2Rs was monitored by the calcium mobilization assay 

(Lei et al. 2015). We tested these receptors individually for their responses toward metal ions: 

ZnSO4 (20 mM), CuSO4 (20 mM), and MgCl2 (20 mM) (Table 1, Fig. 1A). No receptors 

showed responsiveness to these metal ions, with the exception of TAS2R7, which consistently 

showed robust responses toward all three divalent salts. To determine the breadth of tuning of 

TAS2R7 toward metal ions, we also tested MnCl2 (20 mM), Al2(SO4)3 (20 mM), and CaCl2 (20 

mM) (Fig. 1B). All divalent and trivalent ions activated the receptor, albeit with variable 

degrees of efficacy (Fig. 1A, B). ZnSO4 solution is acidic (pH ~5) at the concentration we 

tested, as is Al2(SO4)3 solution (pH ~3). To determine if pH affected the activity of TAS2R7, 

we tested the responsiveness to TAS2R7 to 1 mM citric acid (pH ~3) (Fig. 1C). No specific 

response was detected. Therefore, the responses of TAS2R7 toward metal ions were specific. 

In contrast to divalent and trivalent cations, the monovalent salt KCl did not activate the 

receptor, suggesting that TAS2R7 is specifically tuned to divalent and trivalent salts (Fig. 1C, 

D). To determine whether anions might affect the potency and efficacy of cations, we compared 

the responses of TAS2R7 toward ZnSO4 and ZnCl2. No obvious differences were found 

between two types of anions (EC50 of ZnSO4: 3.21 mM, ZnCl2: 3.42 mM) (Fig. S2).To our 

knowledge, aside from CaSR, TAS2R7 is the only GPCR that can be activated by multiple 

metal ions (Brown et al. 1993; McGehee et al. 1997; Saidak et al. 2009). 

Table 1. Responses of all 25 human TAS2Rs to metallic ions.  

  TAS2R 

Substance (mM) 1 3 4 5 7 8 9 10 13 14 16 19 20 30 31 38 39 40 41 42 43 45 46 50 60 

ZnSO4 20 - - - - + - - - - - - - - - - - - - - - - - - - - 

CuSO4 20 - - - - + - - - - - - - - - - - - - - - - - - - - 

MgCl2 20 - - - - + - - - - - - - - - - - - - - - - - - - - 
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Figure 1. Metal ions activate TAS2R7. (A–C) HEK293 cells transfected with human TAS2R7 with 

Gα16-gust44 were assayed for their responses to metal ions and citric acid. Black traces, representative 

calcium mobilization traces of TAS2R7 to compounds; gray traces, mock-transfected cells used as 

control. RFU, relative fluorescence unit. (D) Quantitative analysis of responses of TAS2R7 to metallic 

ions and citric acid. Data are percentage change (mean ± SD) in fluorescence (peak RFU – baseline 

RFU, denoted F) from baseline fluorescence (denoted F) averaged from triplicates. Experiments were 

replicated three times.  

 

TAS2R7 responds to metal ions in a dose-dependent manner 

To determine the sensitivity of TAS2R7 toward metal ions, we generated concentration-

response functions (Fig. 2). TAS2R7 responded to all metal ions we tested in a dose-dependent 

manner (Fig. 2A), while mock-transfected cells showed no responses to metal ions at any 

concentration we tested (Fig. 2B). Nevertheless, the efficacy differs among different cations. 

The receptor appears to be most sensitive toward aluminum sulfate (EC50, 39±15 μM), followed 

by CuSO4 (EC50,1.04±0.36 mM) , ZnSO4 (EC50, 33.36±0.14 mM), MgCl2 (EC50, 

6.07±1.07mM), CaCl2 (EC50, 5.27±0.50 mM), and MnCl2 (EC50, 6.59±1.73 mM). Mock-

transfected cells showed no responses to any concentration of Al2(SO4)3 tested. 
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Figure 2. TAS2R7 responds to metal ions dose dependently. HEK293 cells transiently transfected 

with human TAS2R7 with Gα16-gust44 showed dose-dependent responses to metal ions: CaCl2, CuSO4, 

ZnSO4, MgCl2, MnCl2, and Al2(SO4)3 (A, C). KCl does not activate TAS2R7 at any concentrations tested 

(A, left panel). Mock-transfected cells (Gα16-gust44 only, Mock) were used as controls for cell 

transfected with TAS2R7 in response to metal ions (B, C). GraphPad Prism 7 was used to fit the curve 

(sigmoidal). Experiments were replicated three times. 

 

As expected, the receptor was also not responsive to any concentration of KCl. Thus, TAS2R7 

interacts differently with different ions.  

Our assay solution contains 2 mM calcium ion, which supports optimal assay condition for the 

calcium mobilization assay, yet TAS2R7 responds to calcium. Therefore, to determine if the 

presence of calcium affects the responses of TAS2R7 to metal ions, we performed calcium 

mobilization assays using assay solution containing no calcium (130 mM NaCl, 5 mM KCl, 

and 10 mM glucose; pH 7.4). All the tested compounds were dissolved in the same assay 
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solution. As expected, TAS2R7 showed robust responses to all six metal ions tested under this 

condition (Fig. 3A). Concentration-dependent curves were similar in the presence and absence 

of calcium in the assay solution. 

 

 

Figure 3. Responses of TAS2R7 to metal ions in the absence and presence of calcium in the assay 

solution. (A) Responses of HEK293 cells transiently transfected with human TAS2R7 with Gα16-

gust44 to six metal ions in the presence and absence of calcium in the assay solution, including CaCl2, 

CuSO4, ZnSO4, MgCl2, MnCl2, and Al2(SO4)3 respectively . GraphPad Prism 7 was used to draw the 

dose-dependent curves. (B) TAS2R14 was expressed along with Gα16-gust44 in the HEK293 cells, and 

the responses to 0.5 mM L-praziquantel were assayed with the presence and absence of calcium. Black 

traces, calcium mobilization with the presence of calcium; gray traces, with the absence of calcium. 

Experiments were replicated twice. 
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The EC50 of six metal ions in the absence of calcium is as follows, CaCl2, 4.70 mM; CuSO4, 

0.85 mM; ZnSO4, 3.49 mM; MgCl2, 5.78 mM; MnCl2, 7.19 mM; Al2(SO4)3, 55 μM , 

respectively, similar to the EC50s in the presence of calcium (CaCl2, 7.56 mM; CuSO4, 1.89 

mM; ZnSO4, 2.41 mM; MgCl2, 7.84 mM; MnCl2, 2.24 mM; Al2(SO4)3, 29 μM ). However, the 

maximal responses to all metal ions were smaller in the absence than in the presence of calcium, 

especially towards MgCl2. This appears to be a general phenomenon for this type of assay, as 

shown by reduced response amplitude for other GPCRs as well (e.g., TAS2R14 to L-

praziquantel, Fig. 3B). All the dose-dependent curves were replicated at least twice.  

TAS2R7 is a narrowly tuned receptor 

TAS2R7 has been reported to respond to certain bitter compounds, including diphenidol, 

quinine, cromolyn, and chlorphenamine (Meyerhof et al. 2010). To further determine the tuning 

properties of TAS2R7, we examined its responsiveness to bitter compounds that were 

previously shown to activate the receptor (Fig. 4A) (Meyerhof et al. 2010). At the 

concentrations reported previously, none of the compounds we tested (diphenidol, quinine, 

cromolyn, and chlorphenamine) triggered detectable responses in cells transiently transfected 

with TAS2R7 in our hands (Meyerhof et al. 2010). However, cromolyn at a higher dose (10 

mM) did elicit a robust response in cells specifically transfected with TAS2R7 but not in mock-

transfected cells. We further confirmed the requirement of high doses of cromolyn to activate 

the receptor by dose-response analysis (EC50, 5.9 mM) (Fig. 4B). For other compounds, even 

higher doses produced no responses (Fig. 4A). Thus, our data indicate that TAS2R7 selectively 

responds to metal ions and cromolyn. We also performed cell-based assay with the presence 

and absence of calcium for cromolyn (Fig. 4C). As expected, the maximal response is smaller 

using the assay solution containing no calcium than the assay solution containing calcium, while 

the EC50s are comparable (with calcium: 6.67 mM; without calcium: 5.22 mM). Therefore, we 

used assay solution containing calcium for our further analysis of the receptor to have a better 

readout. 
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Figure 4. TAS2R7 is a narrowly tuned receptor.  HEK293 cells were transiently transfected with 

human TAS2R7, coupled with Gα16-gust44, and their responses assayed to previously reported bitter 

ligands. Two-tailed t-tests were used to determine whether there is a significantly difference between 

the TAS2R7-transfected cells and mock-transfected (Gα16-gust44 only) cells. (A) Responses to ZnSO4 

and citric acid were chosen as positive control and negative control (NC), respectively. Bitter 

compounds that stimulate significant responses are indicated with an asterisk (*). (p < 0.05) (B) 

Cromolyn activates TAS2R7 in a dose-dependent manner. Experiments were replicated three times. (C) 

Dose-dependent curves of TAS2R7 toward cromolyn with the presence and absence of calcium. 

Experiments were replicated twice. 
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Molecular modeling and site-directed mutagenesis identify two residues of 

TAS2R7 critical for the recognition of metal ions  

To predict how TAS2R7 interacts with metal ions, a homology model of TAS2R7 was built 

based on the crystal structure of the 5-HT2C serotonin receptor (Peng et al. 2018). We first 

automatically docked cromolyn into the GPCR binding cavity formed by helices 2, 3, 5, 6, and 

7, because metal ions are too small for initial docking simulations (Fig. 5C). The results of 

docking simulations identified a pocket similar to that defined by Liu et al. (Liu et al. 2018). 

All amino acids involved in contact with the ligand are part of the typical TAS2R binding 

pocket (Fig. S3).  

 

 

Figure 5. Molecular model of TAS2R7’s binding pocket with docked ligands. (A) Electrostatic 

potential (±10 kbT/e) mapped onto the molecular surface of the protein. Red and blue colors indicate 

negatively and positively charged regions, respectively. The most attractive cavity for cation binding is 

delimited by the green box. (B) Minimized structure of TAS2R7 interacting with Zn2+. (C) Binding 

cavity of TAS2R7 (in light blue) explored by cromolyn in the docking simulations. 
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The electrostatic potential computed on the TAS2R7 model shows a negatively charged region 

(Fig. 5A) suitable for attracting cations. Accordingly, negatively charged or polar residues in 

this area, E161.42, H943.37, E2647.32, and E2717.39 (the superscripts refer to the Ballesteros-

Weinstein notation (Ballesteros and Weinstein 1995)) are considered to interact with metal ions 

through strong electrostatic interactions (Fig. 5B).  

To assess the importance of these residues, we performed site-directed mutagenesis. We 

mutated the negatively charged residues E161.42, E2647.32, and E2717.39 to Q (glutamine), K 

(lysine) or L (leucine). The facing H943.37 was mutated to F (phenylalanine). HEK293 cells that 

expressed mutant receptors along with Gα16-gust44 were examined for their responses to metal 

ions (20 mM for all except 0.16 mM Al2(SO4)3) and cromolyn (10 mM, as a positive control) 

to assess receptor’s function. To determine the expression level of each receptor, we stained the 

wildtype or mutant receptor-transfected cells using an anti-HSV antibody since all the receptors 

are tagged with HSV at c-terminal. There was no obvious difference in the intensity of the 

staining among mutants and wildtype receptors (Fig. S4). Compared to the wild-type receptor 

(Fig. 6A), two classes of mutants were noted: those showing significantly diminished responses 

to only a subset of metal ions (Fig. 6B), and those showing either normal or reduced responses 

to both metal ions and cromolyn (Fig. 6C). 

For example, H943.37F showed diminished responses specifically MnCl2 (Fig. 6B). In contrast, 

E2647.32K showed specific loss of responses to ZnSO4 and Al2(SO4)3, and E2647.32L responded 

to ZnSO4 but not to Al2(SO4)3. With both E2647.32K and E2647.32L, the overall responses of 

mutant receptors to metal ions and cromolyn were reduced. Similarly, substitution of glutamate 

with glutamine (E2647.32Q) led to a mutant receptor showing reduced responses to metal ions 

and cromolyn but did not specifically affect the receptor response to a particular metal ion. 

Substitution of glutamate at E161.42 with other residues showed no specific effects on the 

activity of metallic ions. However, with the exception of E161.42L, all other mutations led to 

relatively smaller responses to both metal ions and cromolyn compared with wild-type 

TAS2R7.  Substitution of E2717.39 with either glutamine or leucine led to a mutant receptor 

showing slightly reduced responses to all metal ions and cromolyn in vitro. Together, our 

mutagenesis data suggest the involvement of H943.37 and E2647.32 in interacting with metal ions. 
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Figure 6. Mutagenesis analysis of the predicted binding pocket for metal ions. Wild-type (A) and 

mutant receptors (B & C) were expressed along with Ga16-gust44 in HEK293 cells, and their responses 

to metal ions and cromolyn were examined. Panel B includes mutant receptors showing selectively 

reduced responses to certain metal ions. Panel C includes mutant receptors showing no specific 

reduction in responses to metal ions. Dunnett’s multiple comparisons test was performed to determine 

when the responses to metallic ions of mutants were significantly decreasing from that of cromolyn, 

indicated with an asterisk (*). (p < 0.05). Experiments were replicated three times. 

 

Discussion 

TAS2R7 as a metal ion detector 

By systematically assaying all the human bitter receptors for their responsiveness to metal ions, 

we found that TAS2R7 acts as a receptor for divalent and trivalent cations. To our knowledge, 

only CaSR and GPR39 have been previously shown to be metal-sensing receptors (Brown et 

al. 1993; Holst et al. 2007; McGehee et al. 1997; Saidak et al. 2009). Identification of TAS2R7 

as a metal-ion-sensing receptor broadens our understanding how metal ions are sensed. 

TAS2Rs evolved to detect bitter substances (which are potentially harmful or toxic) in diets. 

Activation of these receptors would then induce aversive behavior as a defense mechanism 
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(Bachmanov and Beauchamp 2007). Most natural compounds that taste bitter are plant derived. 

Some plants are known to be rich in minerals. Vegetable bitterness is shown to be related to 

calcium content (Tordoff and Sandell 2009). Thus, activation of TAS2R7 may contribute to 

bitterness associated with calcium-rich (or mineral-rich) vegetables. Future work is warranted 

to determine if blocking TAS2R7 (e.g., inhibitors of TAS2R7) can reduce bitterness or metallic 

taste of metal ions or mineral-rich foods. 

Taste disturbance is a widely reported side effect for cancer patients who receive chemotherapy 

or radiotherapy (Comeau et al. 2001). Often, they complain about bitter taste or metallic taste 

(Comeau et al. 2001). It is conceivable that such treatments may alter bitter receptor gene 

expression, such as upregulation of TAS2R7 that is normally expressed at a low level. Metal 

ions in the blood may activate the receptor, leading to bitter/metallic taste perception in 

pathological conditions. Blocking TAS2R7 activity may provide a therapeutic strategy for 

alleviating chemotherapy- or radiotherapy-induced taste disturbance. 

Interaction of metal ions and TAS2R7 

Our structure-function analysis of TAS2R7 showed differential requirements of H94 in helix 3 

and E264 in helix 7 for their interaction with different metal ions. Substitution of the histidine 

residue at position 94 (H3.37) with phenylalanine diminished responsiveness of the receptor 

toward MnCl2 more than toward Al2(SO4)3, ZnSO4, and cromolyn in vitro. Conversely, 

substitution of the negative-charged glutamate residue at position 264 (E7.32) with positive-

charged lysine rendered the receptor insensitive to Al2(SO4)3 and ZnSO4 but still responsive to 

MnCl2. Similarly, substitution with the neutral but slightly bulkier leucine residue also rendered 

the receptor insensitive to Al2(SO4)3. Altogether, our demonstration of the contribution of H94 

and E264 to a binding pocket for metal ions is supported by both mutagenesis analysis and 

molecular modeling. Additionally, we showed that these ions interact distinctively with 

residues lining this binding pocket. Especially, the presence or absence of calcium in the assay 

solution appears to influence the responses of TAS2R7 distinctly for different metal ions. We 

don’t know the reason but speculate that calcium may work cooperatively with certain ions 

(e.g., ZnSO4, MgCl2) than with others (e.g., CuSO4). Future detailed structure-function analysis 

of interactions of the receptor and metal ions will provide further insights into how metal ions 

activate the receptor. 
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Potential extraoral function of TAS2R7 

Recently, TAS2Rs have been shown to be expressed not only in the oral cavity but also in many 

other tissues in the body (Behrens and Meyerhof 2011). However, the endogenous cognate 

ligands for these extra-oral receptors are largely unknown. Compared with other TAS2Rs, 

TAS2R7 is reported to be weakly expressed in taste bud cells (Behrens et al. 2007). Using 

immunostaining and RT-PCR, it has been shown that TAS2R7 is also expressed in pancreatic 

islet cells (Chen et al. 2007).  

Zinc is known to be an important regulator of islet function. Pancreatic β cells contain high 

concentrations of zinc in the secretory granules (Wijesekara et al. 2009). Upon excitation of β 

cells, Zn2+ is coreleased at high concentrations with insulin into the extracellular space of the 

islet. Given the presumptive expression of TAS2R7 in a subset of islet cells, it is tempting to 

speculate that the released Zn2+ may act on TAS2R7-expressing cells to regulate glucose 

homeostasis. Indeed, using human genetic approaches, Dotson et al. (Dotson et al. 2008) 

showed that a nonsynonymous coding SNP in TAS2R7 is associated with type 2 diabetes 

mellitus. However, we found no significant difference in the responsiveness of TAS2R7 having 

isoleucine residue at the position 304 and the receptor carrying M304 toward divalent and 

trivalent metals (data not shown). 

There is compelling evidence supporting that extracellular Al3+ at micromolar concentrations  

activates a GPCR-like signaling pathway in certain cells (Spurney et al. 1999). Aluminum has 

been shown to be a weak agonist for CaSR (Spurney et al. 1999). Given the efficacious response 

of TAS2R7 toward Al3+, it is possible that TAS2R7 mediates certain biological responses 

elicited by aluminum ions. Indeed, Al3+ administered systemically can reach 50 μM in serum 

in animal studies and stimulates osteoblast-mediated de novo bone formation in vivo and 

osteoblast proliferation in vitro (Lau et al. 1991). This is within the sensitivity of TAS2R7 to 

Al3+ (Fig. 2). 

Another study performed by Velazquez-Fernandez et al. (Velazquez-Fernandez et al. 2006) 

showed that TAS2R7 is upregulated in parathyroid adenoma samples compared to parathyroid 

hyperplasia samples, suggesting a potential link between TAS2R7 and regulation of calcium 

homeostasis. However, CaSR acts as a principal regulator of calcium homeostasis.  

CaSR is known to respond to a variety of divalent and trivalent ions (18-20). Despite similarity 

in the responses to divalent and trivalent ions of CaSR and TAS2R7, differences between these 

two receptors are notable. For example, TAS2R7 responds to zinc ions, and CaSR does not. 

Thus, in terms of specificity for metal ions, TAS2R7 appears to be more broadly tuned. The 
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physiological role of TAS2R7 in extraoral tissues and the possibility of metal ions as its 

endogenous ligands warrant future investigation.  
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Supporting information 

 

Figure S1. Alignment of TAS2R7 and 5-HT2C serotonin receptor (PDB 6BQG) sequences. 

Transmembrane helices are delimited by red boxes. Conserved residues are shown in dark blue. Aligned 

residues with a positive Blosum62 score are shown in light blue. 
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Figure S2. Responses of TAS2R7 toward ZnCl2 and ZnSO4. 

Responses of HEK293 cells transiently transfected with human TAS2R7 with Gα16-gust44 to ZnSO4 

and ZnCl2, respectively. A) Quantitative analysis of responses of TAS2R7 to 20 Mm ZnSO4 and ZnCl2. 

Data are percentage change (mean ± SD) in fluorescence (peak RFU – baseline RFU, denoted F) from 

baseline fluorescence (denoted F). Experiments were replicated three times. B, C) Dose-dependent 

curves of TAS2R7 toward ZnSO4 and ZnCl2, Experiments were replicated twice. 
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Figure S3. Comparison of our TAS2R7 homology model with a previously published model.  The 

binding cavity of TAS2R7 (in blue) was explored with cromolyn during the docking simulations. 

Residues proposed by Liu et al. (21) to be part of the binding pocket are shown in green: D65, D86, 

W89, N167, W170, S181, T255, E271. Residues affecting metallic interaction suggested by the present 

study are shown in yellow: E16, H94, E264, E271. 
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Figure S4. Immunostaining of cells transfected with mutants and wildtype TAS2R7 receptors. 

HEK293 cells expressing TAS2R7 or its mutants were immunostained with an anti-HSV antibody. An 

Alexa Fluor 488-labled Donkey anti-mouse secondary antibody was used for fluorescence visualization 

(Green). A brightfield image of the same field was shown next to the fluoresent image. Images were 

taken with the same exposure time and the same setting. 
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Abstract 

Interaction fingerprints are vector representations that summarize the three-dimensional nature 

of interactions in molecular complexes, typically formed between a protein and a ligand. This 

kind of encoding has found many applications in drug-discovery projects, from structure-based 

virtual-screening to machine-learning. Here, we present ProLIF, a Python library designed to 

generate interaction fingerprints for molecular complexes extracted from molecular dynamics 

trajectories, experimental structures, and docking simulations. It can handle complexes formed 

of any combination of ligand, protein, DNA, or RNA molecules. The available interaction types 

can be fully reparametrized or extended by user-defined ones. Several tutorials that cover 

typical use-case scenarios are available, and the documentation is accompanied with code 

snippets showcasing the integration with other data-analysis libraries for a more seamless user-

experience. The library can be freely installed from our GitHub repository 

(https://github.com/chemosim-lab/ProLIF). 

Keywords 

Interaction fingerprint, structural biology, molecular dynamics, docking, virtual screening, 

Python 

Introduction 

Interactions between and within molecular structures are the driving force behind biological 

processes, from protein folding to molecular recognition. The decomposition of interactions by 

residues in biomolecular complexes can provide insights into structure-function relationships, 

and characterizing the nature of each of these interactions can guide medicinal chemists in 

structure-based drug discovery projects [1]. Approaches to encode the interactions observed in 

3D structural data in the form of a binary fingerprint have been developed in the past [2–6] and 

applied successfully to a variety of projects. For example, de Graaf et al. [7] used the Tanimoto 

similarity between the interaction fingerprint (IFP) of a crystallographic reference and the IFP 

of docking poses to rescore virtual screening results on a G protein-coupled receptor (GPCR). 

Rodríguez-Pérez et al. [8] showed that IFPs can achieve superior predictive performance than 

ligand fingerprints (ECFP4) for the classification of kinase inhibitor binding modes with 

machine-learning models. Finally, Mpamhanga et al. [9] showed that one can use the IFP for 

clustering, and then shortlist a reasonable number of binding modes prior to visual inspection. 

https://github.com/chemosim-lab/ProLIF
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More recently, the approach was also implemented for molecular dynamics (MD) simulations 

to study ligand unbinding [10]. While the typical IFP usually encodes pre-established 

interactions (hydrogen bond, π-stacking…etc.) on a per-residue basis, other implementations 

exist. Sato et al. [11] developed a pharmacophore-based IFP which relies on the 

pharmacophoric features of the ligand atoms in contact with the protein and the distance 

between each of these pharmacophores to generate a bitvector. Da et al. [12] developed an IFP 

that relies on the atomic environment of both the protein and ligand interacting atoms to set the 

positions of a bit in the fingerprint, rather than relying on protein residues and predefined 

interactions, which has the advantage of implicitly encoding every possible type of interaction. 

This protocol was later reimplemented in Python by Wójcikowski et al. [13], but other more 

classical Python-based IFP implementations exist [14–18]. In this paper, we introduce a new 

Python library, ProLIF, that overcomes several limitations encountered by these programs, 

namely working exclusively with the output of specific docking programs, not being compatible 

with the analysis of MD trajectories, being restricted to a specific kind of complex (usually 

protein-ligand complexes), depending on residue or atom type naming conventions, or not 

being extensible or configurable regarding interactions. 

Implementation 

ProLIF can deal with RDKit [19] molecules or MDAnalysis [20] Universe objects as input, 

which allows supporting most 3D molecular formats, from docking to MD simulations. While 

most MD topology files do not keep explicit information about bond orders and formal charges, 

MDAnalysis is able to infer this information if all hydrogen atoms are explicit in the structure 

while converting the structure to an RDKit molecule. The RDKit parent molecule is then 

automatically fragmented in child residue molecules based on residues name, number, and 

chain to make it easier to work on a per-residue basis when encoding the interactions. 

When calculating an interaction fingerprint, each interaction is typically defined as two groups 

of atoms that satisfy geometrical constraints based on distances and/or angles (Table 1). Here 

the selection of atoms is made using SMARTS queries (Table 2), which is more precise than 

relying on elements or atomic weights and is also more universal than relying on force-field-

specific atom types. 
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Table 1: Interactions currently available in ProLIF 

Interaction Ligand* Protein* Distance (Å) Angle (deg) 

Anionic Anion Cation 
≤ 4.5  

Cationic Cation Anion 

CationPi Cation Aromatic 
(+)-ctd ≤ 4.5 〈�⃗� , 𝑐𝑡𝑑 ⋯(+)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  〉  ∈  [0, 30] 

PiCation Aromatic Cation 

PiStacking Aromatic Aromatic 
ctd-ctd ≤ 6.0 

min ≤ 3.8 
〈�⃗� , �⃗� 〉  ∈  [0, 90] 

EdgeToFace Aromatic Aromatic 
ctd-ctd ≤ 6.0 

min ≤ 3.8 
〈�⃗� , �⃗� 〉  ∈  [50, 90] 

FaceToFace Aromatic Aromatic 
ctd-ctd ≤ 4.5 

min ≤ 3.8 
〈�⃗� , �⃗� 〉  ∈  [0, 40] 

HBAcceptor HBAcceptor HBDonor 
D-A ≤ 3.5 〈𝐻𝐷⃗⃗⃗⃗⃗⃗ , 𝐻𝐴⃗⃗⃗⃗⃗⃗ 〉  ∈  [130, 180] 

HBDonor HBDonor HBAcceptor 

XBAcceptor XBAcceptor XBDonor 

X-A ≤ 3.5 
〈𝑋𝐷⃗⃗ ⃗⃗  ⃗, 𝑋𝐴⃗⃗⃗⃗  ⃗〉  ∈  [130, 180] 

〈𝐴𝑋⃗⃗⃗⃗  ⃗, 𝐴𝑅⃗⃗⃗⃗  ⃗〉  ∈  [80, 140] XBDonor XBDonor XBAcceptor 

MetalAcceptor Ligand Metal 
≤ 2.8  

MetalDonor Metal Ligand 

Hydrophobic Hydrophobic Hydrophobic ≤ 4.5  

*Although “ligand” and “protein” are used here, all the listed interactions can be applied to any 

molecular complex (protein-protein, DNA-protein…etc.). (-): anion, (+): cation, ctd: centroid of the 

aromatic ring, min: minimum value in the distance matrix between both aromatic rings, n: normal to the 

aromatic ring plane, D: hydrogen/halogen bond donor, A: hydrogen/halogen bond acceptor, H: hydrogen 

atom, X: halogen atom, R: atom linked to a halogen bond acceptor. 
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Table 2: SMARTS patterns used in the definition of interactions. 

Name SMARTS pattern(s) 

Anion [-{1-}] 

Cation [+{1-}] 

Aromatic 
a1:a:a:a:a:a:1 

a1:a:a:a:a:1 

HBAcceptor [N,O,F,-{1-};!+{1-}] 

HBDonor [#7,#8,#16][H] 

XBAcceptor [#7,#8,P,S,Se,Te,a;!+{1-}][*] 

XBDonor [#6,#7,Si,F,Cl,Br,I]-[Cl,Br,I,At] 

Metal [Ca,Cd,Co,Cu,Fe,Mg,Mn,Ni,Zn] 

Ligand [O,N,-{1-};!+{1-}] 

Hydrophobic [#6,#16,F,Cl,Br,I,At;+0] 

 

The library is designed so that users can easily modify existing interactions, as there is usually 

no consensus on the empirical thresholds (distance, angles) that should be used. For example, 

the hydrogen bond DH…A can be defined as a distance between H and A lower or equal to 3.0 

Å [9] or as a distance between D and A lower or equal to 3.5 [4, 14, 21] or 4.1 Å [15, 22], and 

the angles constraints can also vary. ProLIF is also designed to let users define custom 

interactions. 

Each interaction is written as a Python class that implements a “detect” method which takes 

two RDKit molecules as input, typically a ligand and a protein residue, and outputs a Boolean 

(True if the interaction is present, else False) as well as the indices of atoms responsible for the 

interaction. All interaction classes are then gathered inside a “Fingerprint” class that can 

generate a bitvector from two RDKit molecules, and optionally return the atom indices. By 

default, the Fingerprint class is configured to generate a bitvector with the following 

interactions: hydrophobic, π-stacking, π-cation and cation-π, anionic and cationic, and H-bond 

donor and acceptor, although more specific interactions are available (see Table 1). This 

Fingerprint class is designed with two scenarios in mind, post-processing MD trajectories or 
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docking results, thus it provides user-friendly functions to generate the complete array of 

interactions for each pair of interacting residues. 

Finally, the interaction is stored inside the Fingerprint class as a mapping between a pair of 

“ligand” and “protein” residues, and the corresponding interaction bitvector. For easier post-

processing, the interaction fingerprint can then be converted to a pandas DataFrame object [23], 

which facilitates the search for specific interactions and the aggregation of results. 

Results and discussion 

By relying on the interoperability with popular open-source libraries (MDAnalysis and RDKit), 

it can support a wide range of molecular formats typically found in docking experiments and 

MD simulations. Because it directly relies on SMARTS patterns to define the chemical moieties 

that partake in interactions, it is also compatible with any kind of molecular complex, including 

complexes made of ligands, proteins, DNA or RNA molecules. Interoperability also allows for 

data analysis to be substantially easier: as mentioned in the Implementation section the IFP can 

be directly exported to a pandas DataFrame (one of Python’s most popular data analysis 

library), and the documentation contains tutorials on how to visualize the interactions as graphs 

or how to display them on the 3D structure of the complex. 

Analysis of an MD trajectory of a GPCR in complex with a ligand 

The code to run ProLIF on an MD trajectory can be as simple as follow: 

 

Here, we showcase an analysis based on the fingerprint obtained from a 500ns MD simulation 

of the 5-HT1B receptor (class A aminergic GPCR) in complex with ergotamine retrieved from 

the GPCRmd webserver (id 90) [24]. In class A GPCRs, each position is annotated in 

superscript notation according to the Ballesteros-Weinstein numbering scheme [25], a generic 

residue numbering denoting both the helix and position relative to the most conserved residue 

labelled as number 50.  
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Exporting the fingerprint to a DataFrame allows to easily address common questions like which 

residues are involved in a specific type of interaction, which interactions does a specific residue 

do, which are the most frequent types of interactions, or which are the residues most frequently 

interacting with the ligand. In this MD trajectory, there is constantly at least one hydrophobic, 

H-bond donor and cationic interaction, while H-bond acceptor and π-stacking interactions occur 

respectively in 92% and 85% of the analyzed frames (see analysis notebook in supplementary 

data). F3316.52 is responsible for half of the π-stacking interactions occurring during the 

simulation, and the ten residues that interact with the ligand the most frequently are (in 

descending order): D1293.32, I1303.33, F3306.51, V201ECL2.52, F3316.52, S2125.42, W3276.48, 

V200ECL2.51, C1333.36 and F3517.35 which are all in contact with the ligand in at least 97% of 

frames. This is in agreement with the known interactions available from experimental structures 

as listed on the GPCRdb webpage [26] for the human 5-HT1B receptor, except for S2125.42 

which isn’t reported to make H-bond interactions with ligands. The difference is likely due to 

the fact that this analysis is based on an MD trajectory while GPCRdb gathers interactions from 

experimental structures. However, GPCRdb also lists mutational data for S2125.42, and mutating 

this position to an alanine does not affect the binding affinity to ergotamine [27] which can 

coincide with the MD simulation since the ligand makes a hydrogen bond with the backbone 

and not the sidechain. Mutating S2125.43 to a bulkier residue could potentially affect this 

interaction and decrease the binding affinity. 

Because ProLIF keeps track of the atom indices responsible for interactions, it is possible to 

display detailed 2D or 3D interaction plots. Examples of scripts to generate such plots are given 

in the documentation. An exception is made for the ligand interaction network diagram which 

has been directly included in the source code of ProLIF under the LigNetwork class. This 

LigNetwork diagram (Figure 1) is interactive and allows repositioning the residues but also 

hiding specific residue types or interactions by clicking the legend. It can show the interaction 

diagram at a precise frame or aggregate the results and only display interactions that appear 

frequently, controlled by a frequency threshold. In the latter case, to keep the plot readable for 

each ligand-protein-interaction group only the most frequent ligand atom is shown, as it might 

differ between frames.  
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Figure 1: Ligand interaction network for the ergotamine agonist bound to the 5-HT1B receptor. Each 

interaction is shown as a dashed line between the residue and the ligand, and the width of the line is 

linked to the frequency of the interaction in the simulation. Only interactions occurring in at least 30% 

of frames are shown here. 

 

The fingerprint can also be converted to an RDKit bitvector to make use of the 

similarity/distance metric functions implemented. This allows to investigate the presence of 

different binding modes in the simulation. In Figure 2, we show the Tanimoto similarity matrix 

between each interaction fingerprint during the MD simulation. Two clusters are visible (from 

frame 400 to 1400, and from frame 1400 to 2100) which reveals changes in the interactions 

between ergotamine and 5-HT1B. Indeed, in the second cluster the phenyl ring of ergotamine 

gets closer to the indole moiety, which disrupts hydrophobic contacts with W1253.28, H-bonding 

with S2125.42 and π-stacking with F3517.35 to create new hydrophobic interactions with 

T203ECL2, T2095.39, S3346.55 and D3527.36.  
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Figure 2: Tanimoto similarity matrix of ligand-protein interactions between each frame of the MD 

trajectory. 

Analyzing protein-protein interactions (PPI) 

The analysis of intra- and inter-molecular interactions can also be applied to investigate protein 

dynamics and function with ProLIF. Because ProLIF requires explicit hydrogen atoms, we 

preprocess PDB files of X-ray structures in the current section with the PDB2PQR [28] 

webserver as follows: AMBER force-field and naming scheme, protonation states assignments 

with PROPKA at pH 7.0, H-bond network optimization and removal of water molecules. 

In this first example, we focus on the activation mechanism of a class A GPCR and show how 

ProLIF can help pinpoint intramolecular structural modifications upon receptor activation. 

GPCRs are membrane-embedded receptors arranged in seven helical transmembrane domains 

(labelled TM1 to TM7) followed by a shorter helix (H8) that lies at the interface between the 

membrane and the cytosol. This family shares conserved key motifs in each TM domain, and 

some of the motifs are part of molecular switches that mediate ligand binding or receptor 

activation. Among them, the DRY motif in TM3 and the NPxxY motif in TM7 have been 

reported to be part of the allosteric mechanism [29]. Briefly, upon ligand binding, the signal 

propagates from the binding pocket to the ionic lock (comprised of the DRY motif) through a 

network of hydrophobic residues. The ionic lock maintaining the receptor in its inactive form 

is disrupted, leading to an increase of the inter-helix distances (notably TM3-TM6). At the same 

time, the hydrophobic barrier cannot prevent anymore the flooding of the intracellular part of 

the receptor thereby creating an intracellular crevice required for G protein coupling. R3.50 of 
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the DRY motif is known to stabilize the inactive form of the rhodopsin receptor through a salt-

bridge with D6.30 known as the “ionic-lock” [29]. This position can also interact with Y5.58 

through an H-bond, and is reported to be critical for the formation of the active state in the β2 

adrenergic receptor [30]. For the NPxxY motif, the mutation of Y7.53 disrupts interactions with 

N2.40 in the β2 adrenergic receptor [31], and Y7.53 is also reported to have an aromatic interaction 

with F8.50 which stabilizes the inactive conformation of the rhodopsin receptor [32]. 

 

Figure 3: Residue interaction network for the bovine rhodopsin. Residues are colored by 

transmembrane domain (TM). Interactions that only appear in the active (PDB 6FK6) or inactive (PDB 

1U19) state of the receptor are respectively shown in green or orange, and the ones that appear in both 

are in grey. Each residue node is scaled based on its number of interactions. For clarity, interactions that 

occur within the same TM (as labelled by GPCRdb) and interactions between residues that are less than 

3 residues apart are not shown, as well as hydrophobic interactions (as defined in the implementation) 

and residues that did not participate in any interaction. 
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As an example, the residue interaction network of the bovine rhodopsin in both active (PDB 

6FK6) and inactive (PDB 1U19) states is studied to reveal the structural changes involving 

these two motifs. As seen in Figure 3, the ionic lock between R1353.50 and E2476.30 is only 

visible in the inactive form of the receptor, while the interaction between R1353.50 and Y2235.58 

was only detected in the active form. Y3067.53, which is part of the NPxxY motif in TM7, takes 

part in both key interactions that stabilize the inactive form of the receptor previously described: 

an H-bond interaction with N732.40 and a π-stacking interaction with F3138.50. Finally, in 

rhodopsin, the salt-bridge between K2967.43 and E1133.28 is known to be crucial in the activation 

cycle of the receptor and is only disrupted when K2967.43 transiently bounds to retinal [33], 

which is in agreement with the interactions reported here. 

The final step in GPCR signal transduction being an intermolecular process between the GPCR 

and a G-protein, ProLIF can also be used in this case to highlight positions that dictate the 

coupling specificity in a series of GPCR-G-protein complexes. Here, we reproduce the analysis 

of interactions between the β2 adrenoceptor and the Gαs/Gβ1 complex by Flock et al. [34] 

where the authors used a “van der Waals contact” interaction based on Venkatakrishnan et al. 

[35] which considers two residues as interacting if any interatomic distance is below or equal 

to their van der Waals interaction distance (the sum of their van der Waals radii plus a tolerance 

factor of 0.6 Å). We reimplemented this in ProLIF (see analysis notebook in supplementary 

data) and applied it to the same structure (PDB 3SN6) to obtain the PPI network shown in 

Figure 4. The interaction network remains mostly the same as with Figure S6 of the original 

study [34] and highlights the importance of positions I1353.54, P13834.50, F13934.51, Q2295.68, 

R239ICL3 and T2746.36 for GPCR-G protein coupling. Using the default ProLIF implementation 

would help clarifying the types of interactions involved (H-bond, ionic…etc.) for a better 

understanding of coupling specificity when several GPCR-G protein complexes are 

investigated. 
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Figure 4: Interaction network between the β2 adrenoceptor (ADRB2) and G protein complex (Gαs and 

Gβ1). ADRB2 residues are shown as rectangles in shades of green, and G protein residues are shown as 

ellipses in shades of blue for Gαs and in yellow for Gβ1. For ADRB2, ICL denotes the intracellular 

loops while TM corresponds to the transmembrane domains. For Gαs, the common Gα numbering 

(CGN) system is used [36]. Each node is scaled by its number of interactions. Inter and intra protein 

interactions are respectively shown as plain and dashed lines. Residues that do not participate in GPCR-

G protein interactions are not shown, and interactions between covalently bonded residues or residues 

of the same helix (as labelled by GPCRdb) are hidden. 

 

Conclusions 

ProLIF is a new Python library that overcomes limitations encountered by other freely available 

IFP programs. One of the main differences is the support of MD trajectories, while still being 

compatible with other molecular structure files like docking and experimental structures. By 

design, it is also not restricted to a particular kind of molecular complex but supports any 

combination of ligand, protein, DNA, or RNA molecules, thanks to its absence of dependency 

to force-field specificities such as atom types or residue naming convention. It also has a user-

friendly API, comes with several tutorials, and allows creating custom interactions or 

reconfiguring existing ones. Finally, it focuses on the integration with typical data-analysis 
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packages and visualization tools for a seamless user experience within the Python ecosystem. 

Possible improvements include the addition of more interactions types, but also more types of 

fingerprints such as the pharmacophoric [11] or circular [12, 13] fingerprints. Adding a 

command-line interface would also extend the userbase to researchers inexperienced in Python. 

Another point of interest could be the extension to other popular visualization libraries for a 

more streamlined data analysis experience for users. 

 

Availability and requirements 

Project name: ProLIF 

Project home page: https://github.com/chemosim-lab/ProLIF  
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License: Apache License 2.0 
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